Department of Electrical and Computer Engineering
 University of Massachusetts Dartmouth

ECE160: Foundations of Computer Engineering I (Spring 2023)
Instructor: Dr. Liudong Xing

LAB \# 11

(Relevant Lecture: \#22-24)
Monday, April 10 (L1) and Wednesday, April 12 (L2)

OBJECTIVES

- To continue practicing the use of arrays
- To practice the bubble and selection sorting

SUBMISSION REQUIREMENT

1. Please follow "Submission Guidelines" in the lab section of the course website to submit your solution (program files) to the class M: drive by 5 pm, Wednesday, April 12
2. Suggested format for naming your solution files: lab\#-your last name-p\#.cpp

For example: lab11-xing-p1.cpp for problem 1; lab11-xing-p2.cpp for problem 2; ...

EXERCISES

1. Write a program that reads 8 integers into a 1-D array from the keyboard. Then print out the array elements. Then swap the first element and the seventh element (Refer to the example on Slide 6 in Lecture\#22). Finally print out the array elements after the swapping.

Testing: if you input 13579246 from the keyboard, then the output on the screen should be:
The array elements before swapping: 13579246 The array elements after swapping: 43579216

Note: the output in the test cases is given as an example. You may use a different format, for example, each number may be output on a different line.
2. Modify the program in Exercise (4) on Slide 23 of Lecture \#22 (refer to the corresponding solution file for the complete program) so that the program reads a 2-D array with 4 rows and 3 columns from the keyboard. Print out all the four elements of the second column, and print out the one element on the third row and the third column (one number per line).

Testing: if you input 123456789101112 from the keyboard, which corresponds to the 2-D array with the following 4 rows and 3 columns

1	2	3
4	5	6
7	8	9
10	11	12

Then the output on the screen should be:

```
The elements of the second column are:
2
5
8
11
The element on the third row and the third column is:
9
```

3. Modify the array size to 10 in the bubble sort program discussed in Lecture\#24, Slide 15 (Refer to the corresponding solution file for the complete program) so that it can sort the 10 elements of the array into non-decreasing order (i.e., from the minimum value to maximum value).

Testing: run it using the 2434127388907263 the output should be
2377122434638890
4. Modify the bubble sort program in Exercise 3 so that it can sort the 10 elements of the array into non-increasing order (i.e., from the maximum value to minimum value).

Testing: run it using the 2434127388907263 the output should be

$$
9988633424127732
$$

5. Modify the selection sort program discussed in Lecture\#24, Slide 12 (Refer to the corresponding solution file for the complete program) so that it can sort the elements of the array into nonincreasing order (i.e., from the maximum value to minimum value) and the sorted array elements are output to a file named sortedArray.txt using fprintf() (instead of printing the sorted array elements on the screen).

Testing: run the modified program using the input: $\begin{array}{llllll}23 & 34 & 12 & 7 & 3 & 12\end{array}$ and check the file sortedArray.txt on your disk, which should contain

$$
\begin{array}{llllll}
34 & 23 & 12 & 12 & 7 & 3
\end{array}
$$

Review your Lab\#10 exercises and Lecture\#20 about how to write output to a file using fprintf().

