
ECE160: Foundations of Computer Engineering I

Lecture #29 – Final Review

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.

Dr. Xing 2

Final Exam
• Time: 8-11am, May 1, Monday
• Please arrive at the class on time; no make up time will be

given for late arrivals.
• Form:

– Open book open notes
– Calculators are NOT allowed
– Visual Studio is NOT allowed
– ChatGPT is NOT allowed

• Preparation:
– Exam#1, #2, #3
– Lecture #29 (refer to more details in Lecture notes #2 - #28)
– Lab #1 - #12
– HW#1 - #4

Dr. Xing 3

Format of Problems (8)

• Problem#1: True/False
– Problem #1 in Exam#1-#3

• Problem #2: Number conversions
– Problem #2 in Exam#1

• Problem #3: Correct errors in programs
– Problem #4 in Exam#1
– Problem #2 in Exam#2, #3

• Problems #4-#7:Specify outputs of given programs
– Problem #3 in Exam#1
– Problem #3, #4 in Exam#2, #3

• Problem #8: Write or complete programs with functions
– Problem #5 in Exam#1-#3

Dr. Xing 4

Exam#1: Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)
• Exam#1 review (L#11)

Dr. Xing 5

Exam#2: Lectures #12 - #18

• Multi-way selection: switch and if-else-if
(L#12)

• Loops (L#13)

• Functions (L#14 ~ 17)

• Files I (L#18)

• Exam#2 review (L#19)

Dr. Xing 6

Exam#3: Lectures #20 - #26

• Files II (L#20)

• Arrays (L#21-23)

• Array sorting (L#24)

• Strings (L#25)

• Pointers (L#26)

• Exam#3 review (L#27)
• Pointers and arrays (L#28)

Dr. Xing 7

Number Systems (L#2)

1. Basic number systems concepts (base,
positional/place value, symbol value)

2. How to work with numbers represented in binary,
octal, and hexadecimal number systems

3. How to convert back and forth between decimal
numbers and their binary, octal, and hexadecimal
equivalents

4. How to abbreviate binary numbers as octal or
hexadecimal numbers

5. How to convert octal and hexadecimal numbers to
binary numbers

Dr. Xing 8

Identifiers and Naming Rules (L#3)

• Identifiers are used to name data and other objects
(e.g. functions) in our program.

• C is case sensitive
– Celsius, celsius, and CELSIUS are three different identifiers.

• Rules
– The first character can not be a digit. It has to be an alphabetic

character or underscore.

– The identifier name must consist only of alphabetic characters,
digits, or underscores.

– First 31 characters of an identifier are significant/used.

– DO NOT use a C reserved word /keywords (e.g., int).

Dr. Xing 9

Two Types of Errors
• Syntax: the required form of the program punctuation, keywords

(int, float, return, …) etc.
– Examples:

• putting a semicolon after main() is a compilation error
• Forgetting to terminate a comment with */ is a compilation error.

– The C compiler always catches these “syntax errors” or
“compiler errors”

• Semantics (logic): what the program means
– What you want it to do
– The C compiler cannot catch these kinds of errors!
– They can be extremely difficult to find

Dr. Xing 10

Standard Data Types (L#4)
• void: has no values
• int: a number without fraction part

– 3 different sizes of the integer type: short int,
int, long int

– the size of int is machine dependent
– C supports logical data type through the

integer type
• char: a value that can be represented in the

computer’s alphabet.
– represented using 1 byte (ASCII code)

• float: a number with fraction part
– 3 types of floating point numbers: float,

double, long double

Dr. Xing 11

Variables

• Variables are named memory locations that have
a type, identifier, and value.

• Each variable in the program must be declared
and defined!

– Declaration: to name a variable
– Definition: to create a variable, to reserve memory for it
– Usually a variable is declared and defined at the same

time!
• The programmer must initialize any variable

requiring prescribed data when the function starts

Dr. Xing 12

Constants (L#5)
• Four types: Integer (13), Character (‘a’), Floating

point (2.3), String (“hello”)
• Three ways to code constants in the program:

– Literal: an unnamed constant, the data itself (3.14)

– Defined: use the preprocessor command define (e.g.: #define
PI 3.14) --- the expression that follows the name replaces the
name wherever it is found in the source program

– Memory: Use a C type qualifier: const (e.g.: const float pi =
3.14;) --- memory constants fix the contents of a memory location

Dr. Xing 13

Formatted Output printf() (L#6) and
Input scanf() (L#7)

printf(format string, data list);
– Conversion codes %d %c %f etc
– The number of conversion code should match the number of

data/variables that follow the “format string”

scanf(format string, address list);
– The number of conversion code should match the number of

addresses that follow the “format string”
– Each variable name in the address list must be preceded by

an ampersand &.
– You can use field width like %2d, but there is no precision

width in the input field specification. When scanf() finds a
precision, it stops processing.

Dr. Xing 14

C Expressions (1)
• Types of expressions

– Primary expressions: consist of only one operand
with no operator

– Binary expressions: formed by an operand-
operator-operand combination
• Multiplicative expressions: *, /, %
• Additive expressions: +, -

– Assignment expressions using assignment
operator =

– Postfix expressions: a++; a--;
– Unary expressions:

• Prefix increment/decrement: ++a; --a;
• Sizeof()
• plus/minus

Dr. Xing 15

C Expressions (2)
• A side effect is an action that results from the

evaluation of an expression: changing the value of a
variable is a side effect

– side effects take place before the expression is evaluated:
++a; --a;

– side effects take place after the expression is evaluated: a++;
a--;

• Precedence and associativity
– Precedence determines the order in which different

operations are evaluated.
– Associativity determines how operators with the same

precedence are grouped together in complex expressions
(left, right)

– Note that precedence is applied before associativity.

Dr. Xing Lecture #12-Exam1 Review 16

Two-Way Selection if…else (L#10)

• Logical data: true (1) or false (0)
– C supports this through int type: zero (false), non-zero (true)

• 3 logical operators:
– ! NOT, && (logical AND), || (logical OR)

• 6 relational operators
< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
!= not equal

Dr. Xing 17

Two-Way Selection if…else (2)
• if…else statement

if (expression)
{
Action 1
}

else
{
Action 2
}

• Nested if…else statement: An if…else is
included within another if…else

• Dangling else problem: when there is no
matching else for every if, Solution: Always
pair an “else” to the most recent unpaired
“if” in the current block!

• Ternary conditional operator
expression1 ? expression2 : expression3
– This means that if expression1 is true, then

the overall expression evaluates to
expression 2, else it evaluates to
expression3.

Dr. Xing 18

An Example
#include "stdafx.h"
void main(void)
{

int a,b;
printf("Enter two integers:\n");
scanf("%d%d",&a, &b);
if(a >= b)

{
if(a > b)

printf("%d > %d",a,b);
else

printf("%d == %d",a,b);

}
else

{
printf("%d < %d", a, b);

}
}

Good programming style:
Using indention
Line up opening and closing braces

Dr. Xing

switch statements (Rules, L#12)
switch (expression)
{

case constant-1:
statements
break;

case constant-2:
statements
break;

case constant-3:
statements
break;

……
default:

statements
break;

}

• The control expression that switch tests
must be an integral type, i.e., it can not be
a float or a double for example.

• The expression followed by each case
label must be a constant expression.

• Two case labels can not have the same
value.

• However, two cases can have the same
statements.

• The switch can include at most one
default label. And it can be coded
anywhere, but is traditionally coded last.

Dr. Xing 20

if-else-if
control

structure

if (expression-1)
{

statement-block-1
}

else if (expression-2)
{

statement-block-2
}
……

else if (expression-n)
{

statement-block-n
}

else
{

statement-block-n+1
}

Dr. Xing

Example
• Convert a numeric

score to a letter
grade
– 90 or more A
– 80 - 90 B
– 70 - 80 C
– 60 - 70 D
– Below 60 F

float score;
char grade;
int temp;
temp = score/10;
switch (temp)
{

case 10: grade = ‘A’;
break;

case 9: grade = ‘A’;
break;

case 8: grade = ‘B’;
break;

case 7: grade = ‘C’;
break;

case 6: grade = ‘D’;
break;

default: grade = ‘F’;
}

float score;
char grade;
if(score >= 90)

grade = ‘A’;
else if(score >= 80)

grade = ‘B’;
else if(score >= 70)

grade = ‘C’;
else if(score >= 60)

grade = ‘D’;
else

grade = ‘F’;

Dr. Xing 22

Loops (L#13)

• Three C loop statements
– while loops
– do…while loops
– for loops

Dr. Xing 23

while vs. do…while
while (expression)

{
statement-1
statement-2

……
statement-n

}

• Pre-test: loop-continuation
condition is tested before the
loop.

• No semicolon is needed at the
end of the while statement!

do
{

statement-1
statement-2

……
statement-n

} while (expression);

• Post-test: loop-continuation
condition is tested after the loop.

• Semicolon is needed at the end
of the do…while statement!!

Braces are not required if the loop body consists of only one statement

Dr. Xing 24

The for Loop
• General expression:

for(statement1;statement2;statement3)
{

loop_body
}

– statement1: contains initial value of control variable
– statement2: a test expression containing inal value of control

variable
– statement3: increments/decrements the control variable
– Braces are not required if the loop body consists of only one

statement
– The 3 expressions in the for structure are optional. The two

semicolons are required.
– Pre-test: loop-continuation condition (statement2) is tested

before the loop.

Dr. Xing 25

Equivalence

x= 2;
while (x < 13)
{

printf(“%d\n”,x);
x++;

}

for(x = 2; x < 13;x++)
{

printf("%d\n",x);
}

x =2;
do
{

printf(“%d\n”,x);
x++;

} while(x < 13);

Dr. Xing 26

break vs. continue

#include "stdio.h“
void main(void)
{

int a;
for(a =1; a <= 7; a++)

{
if(a == 4)

break;
printf("%d\n", a);

}
printf("I got out of the loop at a==%d\n",a);

}
1
2
3
I got out of the loop at a==4

#include "stdio.h"
void main(void)
{

int a;
for(a =1; a <= 7; a++)

{
if (a == 4)

continue;
printf("%d\n",a);

}
}

1
2
3
5
6
7

break is used to escape from a loop (causes a loop to terminate).
continue is used to skip the remaining statements in the body of a structure and
skip to the next iteration.

Dr. Xing 27

Functions
(L#14, 15)

Preprocessor Directives
#include #define

void main(void)
{ Local definition

Statements
function calls

}

Global Declarations

Function prototypes

return_type func_name(para_list)
{ Local definition

Statements
}

• Every C program
contains one and only
one main()

• Functions must be
declared before being
used in a program

• Information can be
passed between a
function and the
function that calls it

Dr. Xing 28

Parameter Passing (L#16)
• Pass by value

– A copy of the data (argument’s value) is passed to the
called function.

– The function can not modify the original variable’s value
in the caller.

• Pass by reference.
– The called function can modify the original variable’s

value in the caller.
– Any reference to a parameter is the same as a

reference to the variable in the calling function
– It uses the address operator (&) and indirection operator

(*).

Dr. Xing 29

Example (Pass by Value)
What is the output of the program?
#include "stdio.h"
void test(int x);

void main(void)
{

int a;
a =2;
test(a);
printf(“the value of a after call is %d\n", a);

}

void test(int x)
{

x = x + 5;
}

the value of a after call is 2

The value of a is copied into the
memory cell reserved for x in the
region of memory for test function

Dr. Xing 30

Example (Pass by Reference)
#include "stdio.h"
void test(int *x);

void main(void)
{

int a;
a =2;
test(&a);
printf(" the value of a after call is %d\n", a);

}

void test(int *x)
{

*x = *x + 5;
}

the value of a after call is 7

In a function prototype or header, * means the
variable following * is to hold an address

& means the address of , a copy of the address of
variable a is put into memory cell reserved for x in
the memory region reserved for the variables of
test function

Dr. Xing 31

Standard Library Functions (L#16, 17)
• Mathematical functions
• Random number generation functions: srand(), rand()
• Character functions

– Classifying functions: int is…(int testchar);
– Converting functions: int to….(int oldchar);

• Use include statement to include the header files
– Example: #include <stdio.h>

Dr. Xing 32

Recursion (L#17)

• A repetitive process where a function calls itself.
• Recursive solution involves a two-way journey

• First, we decompose the problem from top to bottom
until reaching the base case

• Then we solve it from bottom to top

• Examples:
– factorial(n) (Lecture#17)
– fibonacci(n) (Lecture#17, HW#4--Problem#4)
– gcd(x,y) (Lab#8--Exercise#1)

Dr. Xing 33

Review: factorial(n)
long factorial(int n)
{

int i;
long fact=1;
for(i=1; i<= n; i++)
{

fact = fact * i;
}

return fact;
}

>−
=

=
0 if *)1(*...*2*1
0 if 1

)(
nnn
n

nfactorial

long factorial(int n)
{

if (n == 0)
return 1;

else
return(n*factorial(n-1));

}

Recursive SolutionIterative Solution

Dr. Xing 34

Files (L#18, 20)
• A collection of information/related data treated as

a unit
• Saved in secondary (auxiliary) memory like disks.
• Using files in C:

– How to declare a file_pointer (FILE)
– How to open a file (fopen())
– How to read from a file (fscanf())
– How to write to a file (fprintf())
– How to close a file (fclose())

Dr. Xing 35

A Complete Example (Review)#include "stdafx.h"
int main(void)
{

FILE *fp;
int num1=100;
int num2=200;
int num3=300;
int a=0, b=0, c=0;

fp = fopen(“Xing_file1.txt","w");
if(!fp)
{

printf("I was not able to open file\n");
return(1);

}
fprintf(fp,"%d\n%d\n%d\n", num1, num2, num3);
if(fclose(fp) == EOF)
{

printf("I was not able to close file\n");
return(2);

}

fp = fopen(“Xing_file1.txt",“r");
if(!fp)

{
printf("I was not able to open file\n");
return(1);

}

fscanf(fp,"%d%d%d",&a,&b,&c);

printf(“a is %d\n b is %d\n c is %d\n",a,b,c);

if(fclose(fp) == EOF)
{

printf("I was not able to close file\n");
return(2);

}

}

Dr. Xing 36

Arrays (L#21, 22)

• An array is a fixed-size, sequenced collection of
elements of the same data type.

• Index of the first element is 0!
• The array elements are stored in contiguous and

increasing memory locations.
• Before use, an array has to be defined and declared.

– Reserve memory space for the elements in the array!

Dr. Xing 37

Array Initialization (3 ways)
• At the definition time

int myarray[5]={1,2,10,15,0};
int myarray[] = {1,2,10,15,0};

• Inputting values form the keyboard

• Assigning values

int myarray[5];

for(int i=0; i< 5; i++)
{ scanf(“%d”, &myarray[i]); }

int myarray[5];

for(int i=0; i< 5; i++)
{ myarray[i]=i*2+1; }

Dr. Xing 38

Arrays and Functions (L#23)
• When passing an individual array element, treat the single

array element like a simple variable!
– Pass by values: pass the values of the element without

having it changed in the function
– Pass by reference: change the value of the array

element in the function

• When passing the whole array to a function
– In the calling function, use the array name as the input

parameter passed to the called function
– In the called function, specifically, the function header,

and function declaration, declare the parameter as an
array

Dr. Xing 39

Passing the Entire Array (Example)
#include "stdio.h “

void add(int arr[]);

void main(void)
{

int myarray[5]= {1,2,9,3,6};
add(myarray); /* Pass the whole array to a function */
printf(“The value of myarray[2] is: %d\n",myarray[2]);

}

void add(int arr[])
{

arr[2] = arr[2] + 100;
}

A variable with brackets [] in
function prototype and header
indicate the parameter is an array!

Dr. Xing 40

Initial array

1st pass

2nd pass

3rd pass

4th pass

5th pass

23 78 45 8 32 56

Bubble Sort (L#24)

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

8 23 32 45 56 78

Bubble sort works by repeatedly comparing adjacent
elements and swapping adjacent elements that are out of order

Dr. Xing 41

Selection
Sort (L#24)

Selection sort works
by repeatedly selecting
the smallest/largest
remaining element

Dr. Xing 42

Strings (L#25)
• In C, a string is a variable-length array that is

DELIMITED BY THE NULL CHARACTER (\0).

• Four ways to initialize a string
char month[10] = “March”;

char month[] = “March”;

char month[6] = {‘M’,‘a’, ‘r’,‘c’, ‘h’, ‘\0’};

char *pstr=“March”;

M a r c h \0

M a r c h \0

M a r c h \0 0 0 0 0

M a r c h \0
pstr

Dr. Xing 43

Referencing String Literals

char str[10] = “Hello”;
char *ptr;
ptr=str;

0 0 00H \0olle
ptr

str

str[0]=ptr[0]=“Hello”[0]=‘H’
str[3]=ptr[3]=“Hello”[3]=‘l’

Array name indicates
the address of the first
element of the array

String itself is a pointer
to the first
element/character of the
string

Dr. Xing 44

Pointers (L#26)
• A pointer variable can be declared using * in the

declaration statement
• A pointer to (or the address of) a variable can be

obtained using &
• Pointers provide us a way to work with addresses

symbolically.
#include "stdio.h"
void main(void)
{

int x=3;
int *p= &x;
printf("%d\n",x);
printf("%d\n",*p);
printf(“%d\n",p);

}

Output:
3
3
1244884

Dr. Xing 45

Ways to increment a number
• Assume

int a=0;
int *p=&a;

we need to add 1 to a:

a++;
++a;

a=a+1;

*p=*p+1;

(*p)++;

++(*p);

Dr. Xing 46

• In the called function prototype and definition
header
– Way 1: use the traditional array notation to indicate

that the parameter is an array:
int my_func(int a[]);

– Way 2: use pointers:
int my_func(int *a);

• In the calling function, use the array name as
the parameter in the function call

Passing an Array to a Function

Dr. Xing 47

Arrays and Pointers (L#28)
• Arrays and pointers have a very close relationship

– The array name is a pointer constant to the first element of the
array

– We can use array name anywhere we can use a pointer,
specifically, with the indirection operator *

int a[4] = {1,10,30,4};
int *p = a;

3
6
9

12

Array a

a or p

a+1 or p+1
a+2 or p+2
a+3 or p+3

a[0] or *(a+0) or *(p+0)
a[1] or *(a+1) or *(p+1)
a[2] or *(a+2) or *(p+2)
a[3] or *(a+3) or *(p+3)

pointersAccessing the array elements

Dr. Xing 48

Pointer Compatibility
• Pointer types must match, otherwise, using a cast

operator so that you can make an explicit assignment
between incompatible pointer types!

• Void pointer is the only exception! It can be used with
any pointer and any pointer can be assigned to a void
pointer; however it cannot be dereferenced because a
void pointer has no data type,

Valid:
int* a;
char c = ‘A’;
a = (int*) &c;

Illegal:
int* a;
char c = ‘A’;
a = &c;

Valid:
void* a;
char c = ‘A’;
a = &c;

Illegal:
void* a;
char c = ‘A’;
a = &c;
printf(“%c/n”, *a);

Dr. Xing 49

Final Exam
• Time: 8-11am, May 1, Monday
• Please arrive at the class on time; no make up time will be

given for late arrivals.
• Form:

– Open book open notes
– Calculators are NOT allowed
– Visual Studio is NOT allowed
– ChatGPT is NOT allowed

• Preparation:
– Exam#1, #2, #3
– Lecture #29 (refer to more details in Lecture notes #2 - #28)
– Lab #1 - #12
– HW#1 - #4

Good Luck to
Your Finals!!!

	ECE160: Foundations of Computer Engineering I� �Lecture #29 – Final Review
	Final Exam
	Format of Problems (8)
	Exam#1: Lectures #2 - #10
	Exam#2: Lectures #12 - #18
	Exam#3: Lectures #20 - #26
	Number Systems (L#2)
	Identifiers and Naming Rules (L#3)
	Two Types of Errors
	Standard Data Types (L#4)
	Variables
	 Constants (L#5)
	Formatted Output printf() (L#6) and Input scanf() (L#7)
	C Expressions (1)
	C Expressions (2)
	Two-Way Selection if…else (L#10)
	Two-Way Selection if…else (2)
	An Example
	switch statements (Rules, L#12)
	if-else-if control structure
	Example
	Loops (L#13)
	while vs. do…while
	The for Loop
	Equivalence
	break vs. continue
	Functions (L#14, 15)
	Parameter Passing (L#16)
	Example (Pass by Value)
	Example (Pass by Reference)
	Standard Library Functions (L#16, 17)
	Recursion (L#17)
	Review: factorial(n)
	Files (L#18, 20)
	A Complete Example (Review)
	Arrays (L#21, 22)
	Array Initialization (3 ways)
	Arrays and Functions (L#23)
	Passing the Entire Array (Example)
	Bubble Sort (L#24)		
	Selection Sort (L#24)
	Strings (L#25)
	Referencing String Literals
	Pointers (L#26)
	Ways to increment a number
	Passing an Array to a Function
	Arrays and Pointers (L#28)
	Pointer Compatibility
	Final Exam

