
ECE160: Foundations of Computer Engineering I

Lecture #28 –Pointers and Arrays

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.

Administrative Issues

• Lab #12 (Review Exam#3) due 5pm, April 26

• Final exam on Monday, May 1 (8am-11am)

• Today’s topics:
– Discuss Exam#3 solutions
– Lecture #28 (pointers and arrays)

Dr. Xing

Dr. Xing 3

Review of Lecture #26

• Using pointers
– to increment a number
– to test for equality using pointers
– to add two numbers

• Use multiple pointers for one variable
• Use pointers that point to other pointers
• Pointers and functions

– Pointers can be arguments to a function (pass by
reference)

– Pointers can be returned from a function

Dr. Xing 4

Arrays and Pointers
• Arrays and pointers have a very close relationship

– The array name is a pointer constant to the first element of the
array

– We can use array name anywhere we can use a pointer,
specifically, with the indirection operator *

• Given pointer p, p+n is a pointer to the value n elements
away
– If p is a pointer pointing to the second element of an array
– p-1 is a pointer to the previous (first) element
– p+1 is a pointer to the next (third) element

int a[4] = {1,10,30,4};
int *p = a;

Dr. Xing 5

An Example

#include "stdio.h"

void main(void)
{

int a[4] = {1,10,30,4};
int *p = a;

printf("The address is %p\n", &a[0]);
printf("The address is %p\n", a);
printf("The element is %d\n", a[2]);
printf("The element is %d\n", *(p+2));
printf("The element is %d\n", *(a+2));

}

What is the output?

Dr. Xing 6

Note!
• The following two expressions are exactly the

same when a is the name of an array and n is
an integer:

*(a+n) is identical to a[n]

3
6
9

12

Array a

a

a+1
a+2
a+3

a[0] or *(a+0)
a[1] or *(a+1)

a[2] or *(a+2)
a[3] or *(a+3)

pointers

Dr. Xing 7

Exercise
• Write a program that adds 300 to all elements

of an array that has 6 elements and prints the
new array. It uses a pointer to access the
elements of the array.

#include "stdio.h"
void main(void)
{

int a[6] = {1, 10, 30, 4, 6, 67};
int *p = a;
int i;

//add 300 to each element and print it out
???

}

Dr. Xing 8

Passing an Array to a Function

• In the called function prototype and definition
header
– Way 1: use the traditional array notation to indicate

that the parameter is an array:
int my_func(int a[]);

– Way 2: use pointers:
int my_func(int *a);

• In the calling function, use the array name as
the parameter in the function call

Dr. Xing 9

Modification Exercise
• Write a program that amplifies each element of an array with

4 elements by 100 and then prints the new array. Call a
function to do the multiplication part!

#include "stdio.h"
void multiply(int a[]);

void main(void)
{
int arr[4] = {10,20,30,40};
int i;

//call the multiply function here
multiply(arr);

//output the amplified array elements
for (i = 0; i < 4; i++)
{

printf("%d\n", arr[i]);
}
}

//function definition
void multiply(int a[])
{
for (int i = 0; i < 4; i++)
{

a[i] = a[i] * 100;
}
}

Change to using pointers!

Dr. Xing 10

Pointer Compatibility

• Pointers have a type associated with them
• The types are not just pointer types, but rather

are pointers to a specific type, such as int, char

• Pointer types must match, otherwise, using a
cast operator (Lecture#9) so that you can
make an explicit assignment between
incompatible pointer types!

Dr. Xing 11

Example (1)

char c=‘a’;
int a=0;

char *pc;

pc = &a;

• It’s invalid to assign a pointer
of one type to a pointer of
another type, even though the
values in both cases are
memory addresses and would
therefore seem to be fully
compatible!

• Use a cast operator so that
you can make an explicit
assignment between
incompatible pointer types!/*invalid*/

pc = (char*) &a;
/*valid: use a cast operator (new type) to cast &a to a char pointer*/

Dr. Xing 12

Note!
• In C, a lower order type is automatically converted/promoted to a

higher order type (Lecture#9), but this does not apply to pointers.
• For example: we can say:

but we can’t say:

instead we have to say:

int a;
char c = ‘A’;
a = c;

int* a;
char c = ‘A’;
a = &c;

int* a;
char c = ‘A’;
a = (int*) &c;

The char would be
converted to an integer
value first and then
assignment

Dr. Xing 13

Promotion Hierarchy (L#9, revisit)

Highest long double
double
float
unsigned long int
long int
unsigned int
int
short

Lowest char

Dr. Xing 14

Example (2)

• sizeof(): tells the size in
bytes of the operand

• Assume
– the size of an integer is 4
– the size of a char is 1

byte
– The size of an address is

4 bytes
• What is the output of the

program?
• What happens if removing

(char*) and (int*)?

#include "stdio.h"
void main(void)
{
int x = 66;
int* px;
char c = 'A';
char* pc;

printf("The size of x is: %d\n", sizeof(x));
printf("The size of px is: %d\n", sizeof(px));
printf("The size of c is: %d\n", sizeof(c));
printf("The size of pc is: %d\n", sizeof(pc));

px = &x;
pc = (char*)&x;
px = (int*)&c;
printf("x is %d\n", *pc);
printf("c is %c\n", *px);
}

Dr. Xing 15

Summary of Lecture #28
• The array name is a pointer constant to the first

element of the array
• We can use array name anywhere we can use a

pointer, specifically, we can use the array name with
the indirection operator *

• We can pass the whole array to a function
• Pointer types must match, otherwise, using a cast

operator so that you can make an explicit assignment
between incompatible pointer types!

Dr. Xing 16

Things To Do

• Complete Lab #12 (Review Exam#3) due 5pm,
April 26

• Review lecture notes, lab and homework problems
to prepare for the final exam

	ECE160: Foundations of Computer Engineering I� �Lecture #28 –Pointers and Arrays
	Administrative Issues
	Review of Lecture #26
	Arrays and Pointers
	An Example
	Note!
	Exercise
	Passing an Array to a Function
	Modification Exercise
	Pointer Compatibility
	Example (1)
	Note!
	Promotion Hierarchy (L#9, revisit)
	 Example (2)
	Summary of Lecture #28
	Things To Do

