
ECE160: Foundations of Computer Engineering I

Lecture #25 – Strings

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.

Administrative Issues

• Lab 11 due 5pm, Wednesday, April 12

• No Classes on Monday, April 17 (Patriot’s
Day Holiday); No Lab in the week of April 17

• Exam #3 on Friday, April 21
– Review session on Wednesday, April 19

Dr. Xing

Dr. Xing 3

Review of Lecture #24
• Sorting problem is a problem to

sort/arrange a sequence of
numbers into non-decreasing or
non-increasing order

• Bubble sort works by
repeatedly comparing adjacent
elements and swapping
adjacent elements that are out
of order

• Selection sort works by
repeatedly selecting the
smallest/largest remaining
element

Dr. Xing 4

Before:

• Each array element contains a numerical
value: int, float, double,…!

int myarray[10]={1,2,3};
float yourarray[3]={1.2, 2.3, 3.4};

Dr. Xing 5

This lecture

Will examine arrays containing a single
character in each element, and the last
element is the null character (\0)

strings

Dr. Xing 6

Strings in C

• A string is a series of characters treated as a unit.
• In C, a string is a variable-length array that is

DELIMITED BY THE NULL CHARACTER (\0).
• Examples:

– String “Hello”:

– String “H”:

… H e l l o \0 …

… H \0 …

6 bytes

2 bytes

Dr. Xing 7

Why a null character is needed at the
end of a string?

• A string is not a data type but a data structure
(an array)

• It’s a variable-length structure
• There is a need to identify the logical end of

the data within the physical structure
• C uses ‘\0’ as the end-of-string marker

Dr. Xing 8

String Literals vs Character Literals

• A string literal is a sequence of characters enclosed in
double quotes
– Example: “H”

• A character literal is enclosed in single quotes!
– Example: ‘H’

… H \0 …

… H …

2 bytes

1 byte

Dr. Xing 9

Difference between
strings and character arrays

• “Hello”

• char a[5]={‘H’, ‘e’, ‘l’, ‘l’, ‘o’};

H e l l o \0

H e l l o

Dr. Xing 10

Note!

• In defining an array to store a string, you must
provide enough room for the data and the
delimiter!

• The storage structure must be 1 byte larger
than the maximum data size.

Dr. Xing 11

Referencing String Literals
• A string literal is an array of characters
• Array name indicates the address of the first

element of the array
• So, string itself is a pointer to the first element

of the string
• Example: “Hello”

… H e l l o \0 …

“Hello”[0] “Hello”[4] “Hello”[5]

Dr. Xing 12

Exercises (1)
• What is the output of the following program?

#include "stdio.h"
int main(void)
{

printf("%c\n%c\n", "Hello"[1], "Hello"[4]);
return 0;

}

Dr. Xing 13

Ways to initialize a string?

Dr. Xing 14

Initializing Strings (1)
Example: to assign “Good day” to an array:

char a[13] = “Good day”;
• The compiler will create an array of 13 bytes
• The first nine spaces are taken up by the string

characters and the null character.

They are initialized to 0.

G o o d d a y \0 ? ? ? ?

• What about the rest? (hint: what is the value of any
array element when only a portion of the array is
specified by initialization?)

Dr. Xing 15

Exercises (2-1)
• What is the output of the following program?

#include "stdio.h"
void main(void)
{

char a[13] = "Good day";
for (int i = 0; i < 13; i++)
{

if (i <= 8)
printf("%c\n", a[i]);

else
printf("%d\n", a[i]);

}
}

Dr. Xing 16

Exercises (2-2)
• What is the output of the following program after

changing “%d” to “%c” in the second printf()?

#include "stdio.h"
void main(void)
{

char a[13] = "Good day";
for (int i = 0; i < 13; i++)
{

if (i <= 8)
printf("%c\n", a[i]);

else
printf("%c\n", a[i]);

}
}

Dr. Xing 17

Exercises (2-3)
• What is the output of the following program after

changing “%c” to “%d” in the first printf() as shown
below?

#include "stdio.h"
void main(void)
{

char a[13] = "Good day";
for (int i = 0; i < 13; i++)
{

if (i <= 8)
printf("%d\n", a[i]);

else
printf("%d\n", a[i]);

}
}

Dr. Xing 18

Review Question

• What is the output of the following program?

#include "stdio.h"
void main(void)
{

char month[10] = "March";
printf("%c\n%c\n", month[1], month[4]);
printf("%c\n%d\n", month[8], month[9]);

}

Dr. Xing 19

Initialize Strings (2)

char month[6] = {‘M’, ‘a’,‘r’, ‘c’, ‘h’, ‘\0’};
• Initialize a string as an array of characters
• Need to ensure that the null character is at the

end of the string

• It’s tedious to code!

M a r c h \0

Dr. Xing 20

Initializing Strings (3)

Example: to assign “March” to a string:
char month[] = “March”;

• The compiler will create an array of 6 bytes
• The six spaces are taken up by the string characters

March and the null character.

M a r c h \0

• What if we store “December” in it later?

We could overrun the array and destroy whatever
came after the array

Dr. Xing 21

Note!

char month[] = “March”;
• The above is a Dangerous way to initialize a string,

because C creates an array with 6 elements and if we
assign a bigger string to month, the program will crash.

Is there a safe and flexible way to
initialize a string?

Dr. Xing Lecture #25 22

Dr. Xing 23

Using Pointers

• A pointer is a derived data type; a type built
from one of the standard types

• The value of a pointer is any of the addresses
available in computer for storing or accessing
data

• To declare a pointer variable, use * in the
declaration

Dr. Xing 24

Initializing Strings (4)
char *pstr=“March”;

• Assign a string literal to a character pointer

M a r c h \0

pstr

pstr is declared as a single pointer variable,
used to hold the address of a character, here,
the first character in the string “March”

Dr. Xing 25

Summary of Lecture #25
• In C, a string is a variable-length array that is

DELIMITED BY THE NULL CHARACTER (\0).

• Four ways to initialize a string
char month[10] = “March”;

char month[] = “March”;

char month[6] = {‘M’,‘a’, ‘r’,‘c’, ‘h’, ‘\0’};

char *pstr=“March”;

M a r c h \0

M a r c h \0

M a r c h \0 0 0 0 0

M a r c h \0
pstr

Dr. Xing 26

Things To Do

• Review lecture notes
• Prepare for Exam#3

Next Topic
• Pointers

	ECE160: Foundations of Computer Engineering I� �Lecture #25 – Strings
	Administrative Issues
	Review of Lecture #24
	Before:
	This lecture
	Strings in C
	Why a null character is needed at the end of a string?
	String Literals vs Character Literals
	Difference between �strings and character arrays
	Note!
	Referencing String Literals
	Exercises (1)
	Ways to initialize a string?
	Initializing Strings (1)
	Exercises (2-1)
	Exercises (2-2)
	Exercises (2-3)
	Review Question
	Initialize Strings (2)
	Initializing Strings (3)
	Note!
	Is there a safe and flexible way to initialize a string?
	Using Pointers
	Initializing Strings (4)
	Summary of Lecture #25
	Things To Do

