
ECE160: Foundations of Computer Engineering I

Lecture #24 – Array Sort

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.



Administrative Issues (4/7)

• Last day to withdraw from a class is Friday, 
April 7 (Today)

• Today’s topics  
– Arrays & Functions (Finish L#23)
– Array Sorting (Then L#24)

Dr. Xing 2



Dr. Xing 3

Review of Lectures #23

• We can pass an individual array element to a function 
like any other variables as long as the array element 
type matches the function parameter type!
– Pass by values
– Pass by references

• To pass the whole array to a function, we pass the 
address of the array (via array name), i.e., pass by 
references!



Dr. Xing 4

Add100 to myarray[2]
#include "stdio.h"

void add(int *number);

void main(void)
{

int myarray[5] = {1,2,9,3,6};
add(&myarray[2]);
printf("The value of myarray[2]  

is: %d\n", myarray[2]);
}

void add(int *number)
{

*number = *number + 100;
}

#include "stdio.h"

void add(int arr[]);

void main(void)
{

int myarray[5]= {1,2,9,3,6};
add(myarray);
printf("The value of myarray[2] 
is: %d\n", myarray[2]);

}

void add(int arr[])
{

arr[2] = arr[2] + 100;
}

Pass the whole array to 
a function 

Pass an array element’s 
address to a function 



Dr. Xing 5

Agenda

• Array sorting
– Problem statement
– Bubble sort
– Selection sort



Dr. Xing 6

The Sorting Problem

• Sort a sequence of numbers into non-decreasing (from 
minimum value to maximum value) or non-increasing
(from maximum value to minimum value) order

A Sorting 
Program

3,4,6,2,4,5 {2,3,4,4,5,6}

An input 
instance  

The  output



Dr. Xing 7

The Sorting Problem –
Formal Definition

• Input: A sequence of n numbers a1, a2, . . . , an.

• Output: A permutation (reordering) a1’, a2’, . . . , 
an’ of the input sequence such that 

a1’ ≤ a2’ ≤ · · · ≤ an’

or  

a1’ ≥ a2’ ≥ · · · ≥ an’

non-decreasing

non-increasing



Dr. Xing 8

Sorting Algorithms/Methods

• Bubble sort: works by repeatedly swapping 
adjacent elements that are out of order 

• Selection sort: works by repeatedly selecting 
the smallest/largest remaining element



Dr. Xing 9

Bubble Sort
• In the bubble sort, the list of elements to be sorted is 

divided into two sublists: sorted and unsorted. 
• The smallest element is bubbled from the unsorted 

sublist and moved to the sorted sublist.
• Then the wall moves one element ahead, increasing # 

of sorted elements and decreasing # of unsorted ones.

Sorted Unsorted

wall The wall is moving 
in this direction



Dr. Xing 10

Bubble Sort (Cont’d)
• Works by repeatedly comparing adjacent elements and 

swapping adjacent elements that are out of order

• Example: a[6] = {23, 78, 45, 8, 32, 56}
– start from the right 56 and compare it to 32
– 56 does not move, because 32 is smaller. 
– 32 does not move because 8 is smaller. 
– Swap 45 and 8 because 8 is smaller than 45. 
– Swap 78 and 8 because 8 is smaller
– Swap 23 and 8 because 8 is smaller
– 8 bubbles up to the top!

8 | 23   78  45  32  56.
– The next time (2nd pass) 23 is going to bubble up to the left 

(sorted list)
– …..



Dr. Xing 11

Initial array

1st pass

2nd pass

3rd pass

4th pass

5th pass

23 78 45 8 32 56

An Example

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

8 23 32 45 56 78



Dr. Xing 12

A Function to Implement 
Bubble Sort  

void bubbleSort(int list[], int last)  /*last = (array size -1) */
{

int current, walker, temp;
for(current=0; current < last; current++) 

for(walker=last; walker > current; walker--) 
if(list[walker] < list[walker-1]) 
{

temp = list[walker];
list[walker] = list[walker-1];
list[walker-1] = temp;

}
}

/*Swapping two 
array elements 
(Lecture #22)*/



Dr. Xing 13

Note!

• Why does the outer for loop need to run for only 
the first n-1 elements, rather than for all n
elements, if n is the array_size?

• Answer:  After the first n – 1 elements, the 
subarray A[1 . . n - 1] contains the smallest n - 1 
elements, sorted, and therefore element A[n] must 
be the largest element.



Dr. Xing 14

Initial array

1st pass
current=0

2nd pass
current=1

3rd pass
current=2

4th pass
current=3

5th pass
current=4

23 78 45 8 32 56

Bubble Sort (Example Revisit)

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

8 23 32 45 56 78



Dr. Xing 15

Exercise (1): 
Fill in missing 

parts to complete 
the program  

#include "stdio.h"
#define ARRAY_SIZE 6

//add function prototype here
???

void main(void)
{
int myarray[ARRAY_SIZE];
int i = 0;

printf("Please input the array 
elements:\n");
for (i = 0; i < ARRAY_SIZE; i++)
{

scanf_s("%d", &myarray[i]);
}

//call the bubbleSort function here
???

printf("The array elements after sorting 
are:\n");

???

}

void bubbleSort(int list[], int last)
{
int current, walker, temp;
for (current = 0; current < last; current++)

for (walker = last; walker > current; walker--)
if (list[walker] < list[walker - 1])
{

temp = list[walker];
list[walker] = list[walker - 1];
list[walker - 1] = temp;

}
}



Dr. Xing 16

Selection Sort

• Works by repeatedly selecting the smallest 
remaining element

• The list of elements to be sorted is divided into 
two sublists: sorted and unsorted.

• Find the smallest element from the unsorted list 
and exchange it with the element at the first 
position of the unsorted list 



Dr. Xing 17

Selection Sort (Cont’d)

• Then move the wall one element ahead, 
increasing # of sorted elements and 
decreasing # of unsorted ones

• Until the entire array is sorted



Dr. Xing 18

An Example



Dr. Xing 19

A Function to Implement Selection Sort

void selectionSort(int list[], int last) 
{

int current, walker, temp, min;
for(current=0; current < last; current++) 
{

min=current;

for(walker=current+1; walker <=last; walker++) 
if(list[walker] < list[min])

min=walker;

/*smallest selected: exchange with current element*/ 
temp = list[current];
list[current] = list[min];
list[min] = temp;

}
}



Dr. Xing 20

Exercise (2)

• Write a program that sorts the elements of 
an array in the non-decreasing order using 
selection sort, and then prints them out. 
The array contains 6 integers which are 
entered from the keyboard.
1. Enter array elements from the keyboard
2. Sort the array elements using function 

selectionSort()
3. Output the sorted array elements on the screen



Dr. Xing 21

Exercise (2): 
Fill in missing parts to 
complete the program 

#include "stdio.h"
#define ARRAY_SIZE 6

//add function prototype here
???

void main(void)
{
int myarray[ARRAY_SIZE];
int i = 0;

printf("Please input the array 
elements:\n");

???

//call the selectionSort function here
???

printf("The array elements after sorting 
are:\n");

???

}

void selectionSort(int list[], int last)
{

int current, walker, temp, min;
for (current = 0; current < last; current++)
{

min = current;
for (walker = current + 1; walker <= last; 

walker++)
if (list[walker] < list[min])

min = walker;
/*smallest selected: exchange with current 

element*/
temp = list[current];
list[current] = list[min];
list[min] = temp;

}
}



Dr. Xing 22

Summary of Lecture #24

• Sorting problem is a problem to sort/arrange a 
sequence of numbers into non-decreasing or non-
increasing order

• Bubble sort works by repeatedly comparing adjacent 
elements and swapping adjacent elements that are 
out of order

• Selection sort works by repeatedly selecting the 
smallest/largest remaining element



Dr. Xing 23

Things To Do

• Review lecture notes
• Run and test the programs in Exercises (1) 

and (2) on Slides 15 and 21 (refer to the 
solution file for the complete programs)  

Next Topic 
• Strings and pointers


	ECE160: Foundations of Computer Engineering I� �Lecture #24 – Array Sort
	Administrative Issues (4/7)
	Review of Lectures #23
	Add100 to myarray[2]
	Agenda
	The Sorting Problem
	The Sorting Problem – �Formal Definition
	Sorting Algorithms/Methods
	Bubble Sort
	Bubble Sort (Cont’d)
	An Example		
	A Function to Implement Bubble Sort  
	Note!
	Bubble Sort (Example Revisit)		
	Exercise (1): �Fill in missing parts to complete the program  
	Selection Sort
	Selection Sort (Cont’d)
	An Example
	A Function to Implement Selection Sort
	Exercise (2)
	Exercise (2): �Fill in missing parts to complete the program 
	Summary of Lecture #24
	Things To Do

