
ECE160: Foundations of Computer Engineering I

Lecture #19 – Exam #2 Review

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.

Administrative Issues
• Midsemester indicator available in COIN and M: drive

grade.xlsx; refer to my message sent to your umassd
email for explanation and recommendation.

• Lab#8
– Due 5pm, Wednesday, March 22 (Today)

• Homework#4
– Due 9am, Wednesday, March 22 (Today)

• Exam#2 review session today

Dr. Xing 2

Dr. Xing 3

Exam #2

• Time: 9:00am ~ 10:30am, Friday, March 24
• Please arrive at the class on time; no make up time will

be given for late arrivals.
• Form:

– Open book, open notes
– Calculators are NOT allowed
– Visual Studio is NOT allowed

• Preparation:
– Lecture notes #12 - #18 prepared by Dr. Xing (available on class

website)
– Homework #3 - #4
– Lab #5 - #8

Dr. Xing 4

Exam#1: Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)

Dr. Xing 5

Exam#2: Lectures #12 - #18

• Multi-way selection: switch and if-else-if
(L#12)

• Loops (L#13)

• Functions (L#14 ~ 17)

• Files I (L#18)

Dr. Xing Lecture #12

switch statements (L#12, Rules)
switch (expression)
{

case constant-1:
statements
break;

case constant-2:
statements
break;

case constant-3:
statements
break;

……
default:

statements
break;

}

• The control expression that switch tests
must be an integral type, i.e., it can not be
a float or a double for example.

• The expression followed by each case
label must be a constant expression.

• Two case labels can not have the same
value.

• However, two cases can have the same
statements.

• The switch can include at most one
default label. And it can be coded
anywhere, but is traditionally coded last.

Dr. Xing Lecture #12

Example (1)

• Write a program using
switch that can convert a
numeric score to a letter
grade
– 90 or more A
– 80 - 90 B
– 70 - 80 C
– 60 - 70 D
– Below 60 F

float score;
int temp;
char grade;
temp = score/10;
switch (temp)
{

case 10: grade = ‘A’;
break;

case 9: grade = ‘A’;
break;

case 8: grade = ‘B’;
break;

case 7: grade = ‘C’;
break;

case 6: grade = ‘D’;
break;

default: grade = ‘F’;
}

Dr. Xing Lecture #118

if-else-if
control

structure

if (expression-1)
{

statement-block-1
}

else if (expression-2)
{

statement-block-2
}
……

else if (expression-n)
{

statement-block-n
}

else
{

statement-block-n+1
}

Dr. Xing Lecture #12

Example (2)

• Write a program using if-
else-if that can convert a
numeric score to a letter
grade
– 90 or more A
– 80 - 90 B
– 70 - 80 C
– 60 - 70 D
– Below 60 F

float score;
char grade;
if(score >= 90)

grade = ‘A’;
else if(score >= 80)

grade = ‘B’;
else if(score >= 70)

grade = ‘C’;
else if(score >= 60)

grade = ‘D’;
else

grade = ‘F’;

Dr. Xing 10

Loops (L#13)

• Three C loop statements
– while loops
– do…while loops
– for loops

Dr. Xing 11

while vs. do…while
while (expression)

{
statement-1
statement-2

……
statement-n

}

• Pre-test: loop-continuation
condition is tested before the
loop.

• No semicolon is needed at the
end of the while statement!

do
{

statement-1
statement-2

……
statement-n

} while (expression);

• Post-test: loop-continuation
condition is tested after the loop.

• Semicolon is needed at the end
of the do…while statement!!

Braces are not required if the loop body consists of only one statement

Dr. Xing 12

The for Loop
• General expression:

for(statement1;statement2;statement3)
{

loop_body
}

– statement1: contains initial value of control variable
– statement2: a test expression containing final value of control

variable
– statement3: increments/decrements the control variable
– Braces are not required if the loop body consists of only one

statement
– The 3 expressions in the for structure are optional. The two

semicolons are required.
– Pre-test: loop-continuation condition (statement2) is tested

before the loop.

Dr. Xing 13

Equivalence

x= 2;
while (x < 13)
{

printf(“%d\n”,x);
x++;

}

for(x = 2; x < 13;x++)
{

printf("%d\n",x);
}

x =2;
do
{

printf(“%d\n”,x);
x++;

} while(x < 13);

Dr. Xing 14

break/continue
• The break and continue statements are used in

loops to change the flow of control.

• break is used to escape from a loop (causes a
loop to terminate).

• continue is used to skip the remaining
statements in the body of a structure and skip
to the next iteration.

Dr. Xing 15

break vs. continue
#include "stdio.h“
void main(void)
{

int a;
for(a =1; a <= 7; a++)
{

if(a == 4)
break;

printf("%d\n", a);
}
printf("I got out of the loop at
a==%d\n",a);

}

1
2
3
I got out of the loop at a==4

#include "stdio.h"
void main(void)
{

int a;
for(a =1; a <= 7; a++)
{

if (a == 4)
continue;

printf("%d\n",a);
}

} 1
2
3
5
6
7

Dr. Xing 16

Exam#2: Lectures #12 - #18

Multi-way selection: switch and if-else-if (L#12)

 Loops (L#13)

• Functions (L#14 ~ 17)
– User defined functions
– Standard library functions
– Recursions

• Files I (L#18)

Dr. Xing 17

Functions (L#14, 15)

• A function is an independent module that somebody
calls it in order to perform a specific task

• One reason for defining a function is to avoid writing
the same group of C statements over and over again.

• Every C program contains one and only one main()
• Functions must be declared before being used in a

program
• Information can be passed between a function and the

function that calls it

Dr. Xing 18

Function Declarations
• Through the function prototype statements

return_value_type function_name(parameter_list);

– same as the function header, but with a semicolon at the end
– Parameter names are not necessary

– Make sure that the function prototype matches exactly the
function’s definition (return type, function name, number, types,
and order of arguments)

float average_2(int num1, int num2);
float average_2(int, int);

Dr. Xing 19

Calling Functions

• Format
function_name(parameter_expression_list)

– Expression in the list can be and commonly is a single
variable or constant

– Separated by commas
– Total number of expressions must equal to number of

arguments in the function prototype

• When the function has no arguments, remember to
put the parentheses when you call them

• A function call transfers program control and passes
the values from the caller to the function

Dr. Xing 20

Basic structure
of the C

programs

Preprocessor Directives
#include #define

void main(void)
{ Local definition

Statements
function calls

}

Global Declarations

Function prototypes

return_type func_name(para_list)
{ Local definition

Statements
}

#include "stdio.h“
/*function delcaration*/
void add(int f, int g);
void subtract(int f, int g);
void multiply(int f, int g);
void main(void)
{

char c;
int a, b;
printf("Please enter the operation:\n");
scanf("%c",&c);
printf("Please enter two integers\n");
scanf("%d%d",&a,&b);
switch(c)
{

case '+': printf("This is an addition\n");
add(a,b);
break;

case '-': printf("This is a subtraction\n");
subtract(a,b);
break;

case '*': printf("This is a multiplication\n");
multiply(a,b);
break;

default: printf(" Operation not defined\n");
}

}
Dr. Xing 21

/*add() function definition*/
void add(int f, int g)
{

int sum;
sum = f+g;
printf("The result is %d\n", sum);

}
/*subtract() function definition*/
void subtract(int f, int g)
{

int difference;
difference = f-g;
printf("The result is %d\n", difference);

}
/*multiply() function definition*/
void multiply(int f, int g)
{

int product;
product = f*g;
printf("The result is %d\n", product);

}

Calculator
Example

Dr. Xing 22

Note (Function Definition)!
• DO NOT use a semicolon at the end of the function

header definition.
• The function body must be enclosed within a pair of

braces!
• Ensure that what you are returning from the function

matches the return type of the function.
• The type of each function argument must be

individually defined in the parameter list.
• DO NOT define a function inside another function.

Dr. Xing 23

Parameter Passing (L#16)
• Pass by value

– A copy of the data (argument’s value) is passed to the
called function.

– The function can not modify the original variable’s value
in the caller.

• Pass by reference.
– The called function can modify the original variable’s

value in the caller.
– Any reference to a parameter is the same as a

reference to the variable in the calling function
– It uses the address operator (&) and indirection operator

(*).

Dr. Xing 24

Example (Pass by Value)
What is the output of the program?
#include "stdio.h"
void test(int x);

void main(void)
{

int a;
a =2;
test(a);
printf(“the value of a after call is %d\n", a);

}

void test(int x)
{

x = x + 5;
}

the value of a after call is 2

The value of a is copied into the
memory cell reserved for x in the
region of memory for test function

Dr. Xing 25

Example (Pass by Reference)
#include "stdio.h"
void test(int *x);

void main(void)
{

int a;
a =2;
test(&a);
printf(" the value of a after call is %d\n", a);

}

void test(int *x)
{

*x = *x + 5;
}

the value of a after call is 7

In a function prototype or header, * means the
variable following * is to hold an address

& means the address of , a copy of the address of
variable a is put into memory cell reserved for x in
the memory region reserved for the variables of
test function

Dr. Xing 26

Standard Library Functions (L#16, 17)

• C has a rich collection of functions whose
definitions have been written and are ready to
be used in your programs
– Mathematical functions
– Random number generation functions: srand(),

rand()
– Character functions

• Classifying functions: int is…(int testchar);
• Converting functions: int to….(int oldchar);

Dr. Xing 27

Using Standard Library Functions

• To use them, include their prototype declarations
in the program

• Their prototypes are grouped into header files
– Input/output functions (printf, scanf) stdio.h
– Mathematical functions math.h, stdlib.h
– General utility functions stdlib.h
– Etc…

• Use include statement to include the header files
– Example: #include <stdio.h>

Dr. Xing 28

Mathematical Functions

• double ceil (double number);
– returns the smallest integral value greater than or equal to a

number.
• double floor (double number);

– returns the largest integral value that is equal or less than a
number.

• double fabs(double number);
– returns the absolute value of a double

• double sqrt(double number);
– returns the square root of a number.

• double pow (double x, double y);
– return the value of x raised to the power y, I.e., xy

Dr. Xing 29

#include "stdlib.h"
#include "stdio.h”
#include "time.h”

void main(void)
{

int rand1;
int rand2;

srand(time(NULL));
rand1 = rand();
rand2 = rand();

printf("The numbers are %d %d\n", rand1, rand2);
}

rand() and srand()

Dr. Xing 30

Scaling Random Numbers
• To scale numbers in the range min ~ max, we scale

like this:
rand() %((max + 1)-min) + min

#include "stdlib.h"
#include "stdio.h”
#include "time.h”

void main(void)
{

int rand1;
int rand2;

srand(time(NULL));
rand1 = rand()%11;
rand2 = rand()%11+20;

printf("The numbers are %d %d\n", rand1, rand2);
}

Dr. Xing 31

Recursion (L#17)

• Two approaches to writing repetitive algorithms
– Using loops (for, while, do…while; iterative way)
– Using recursion

• Recursion is a repetitive process where a
function calls itself.
– Recursive solution involves a two-way journey

• First, we decompose the problem from top to bottom
• Then we solve it from bottom to top

– Base case:
• The statement that “solves” the problem
• Every recursive function must have a base case
• Once the base case has been reached, the solution begins

Dr. Xing 32

Review: factorial(n)
long factorial(int n)
{

int i;
long fact=1;
for(i=1; i<= n; i++)
{

fact = fact * i;
}
return fact;

}

>−
=

=
0 if *)1(*...*2*1
0 if 1

)(
nnn
n

nfactorial

long factorial(int n)
{

if (n == 0)
return 1;

else
return(n*factorial(n-1));

}

Recursive SolutionIterative Solution

Dr. Xing 33

Examples of Recursive Functions

• factorial(n) (Lecture#17)

• fibonacci(n) (Lecture#17, HW#4--Problem#4)

• gcd(x,y) (Lab#8)

Dr. Xing 34

Exam#2: Lectures #12 - #18

Multi-way selection: switch and if-else-if (L#12)

 Loops (L#13)

Functions (L#14 ~ 17)

• Files I (L#18)

Dr. Xing 35

Files
• A collection of information/related data treated as

a unit
• Saved in secondary (auxiliary) memory like disks.
• Using files in C:

– How to declare a file_pointer (FILE)
– How to open a file (fopen())
– How to read from a file (fscanf())
– How to write to a file (fprintf())
– How to close a file (fclose())

Dr. Xing 36

About FILE

• FILE is a C derived data type defined in the C
standard header file stdio.h
– Include file: #include <stdio.h>

• To manipulate a disk file, use the C data type
FILE to declare a file_pointer, then use this
file_pointer to handle your file

FILE *file_pointer;

Dr. Xing 37

How to Open a file?
• Format:

file_pointer = fopen(“file_name”, “mode”);
• Mode:

– r: Open file for reading.
– w: Open text file for writing.
– a: Open text file for appending.

• fopen() creates a link between a disk file and a
file_pointer. Once the link is created we can work
with the file_pointer in our program to give us
access to the file to which it is linked.

Dr. Xing 38

How to Read data from a File?

Using fscanf() :

• reads the contents of the file indicated by the file_pointer
according to the conversion code in format_string.

• contents read are put into the address given by the
address_list.

fscanf(file_pointer, “format_string”, address_list)

FILE *example_ptr;
example_ptr = fopen(“Lecture19.txt”, “r”);
fscanf(example_ptr, “%d%lf”, &a, &b)

Dr. Xing 39

How to Write output to a File

• The output displayed on the screen is lost when the
screen scrolls or clears

• To keep a permanent record of the output, write the
output to a file

fprintf(file_pointer, “format_string”, data_list)

writes the values of data in data_list using the given
format_string to a file that is linked to the program
using the file_pointer

printf(“format_string”, data_list)

Dr. Xing 40

How to Close a file?
• It’s good practice to close files (to free system

resources) after they have been used!
• Format/prototype:

int fclose(FILE *file_pointer);
• Example:

fclose(example_ptr);

Note: use file_pointer, not the file name to close a file!

Dr. Xing 41

A Complete Example (Review)#include "stdafx.h"
int main(void)
{

FILE *fp;
int num1=100;
int num2=200;
int num3=300;
int a=0, b=0, c=0;

fp = fopen(“Xing_file1.txt","w");
if(!fp)
{

printf("I was not able to open file\n");
return(1);

}
fprintf(fp,"%d\n%d\n%d\n", num1, num2, num3);
if(fclose(fp) == EOF)
{
printf("I was not able to close file\n");
return(2);

}

fp = fopen(“Xing_file1.txt",“r");
if(!fp)

{
printf("I was not able to open file\n");
return(1);

}

fscanf(fp,"%d%d%d",&a,&b,&c);

printf(“a is %d\n b is %d\n c is %d\n",a,b,c);

if(fclose(fp) == EOF)
{

printf("I was not able to close file\n");
return(2);

}

}

Dr. Xing 42

Exam #2

• Time: 9:00am ~ 10:30am, Friday, March 24
• Please arrive at the class on time; no make up time will

be given for late arrivals.
• Form:

– Open book, open notes
– Calculators are NOT allowed
– Visual Studio is NOT allowed

• Preparation:
– Lecture notes #12 - #18 prepared by Dr. Xing (available on class

website)
– Homework #3 - #4
– Lab #5 - #8 Good Luck!

	ECE160: Foundations of Computer Engineering I� �Lecture #19 – Exam #2 Review
	Administrative Issues
	Exam #2
	Exam#1: Lectures #2 - #10
	Exam#2: Lectures #12 - #18
	switch statements (L#12, Rules)
	Example (1)
	if-else-if control structure
	Example (2)
	Loops (L#13)
	while vs. do…while
	The for Loop
	Equivalence
	break/continue
	break vs. continue
	Exam#2: Lectures #12 - #18
	Functions (L#14, 15)
	Function Declarations
	Calling Functions
	Basic structure of the C programs
	Calculator �Example
	Note (Function Definition)!
	Parameter Passing (L#16)
	Example (Pass by Value)
	Example (Pass by Reference)
	Standard Library Functions (L#16, 17)
	Using Standard Library Functions
	Mathematical Functions
	rand() and srand()
	Scaling Random Numbers
	Recursion (L#17)
	Review: factorial(n)
	Examples of Recursive Functions
	Exam#2: Lectures #12 - #18
	Files
	About FILE
	How to Open a file?
	How to Read data from a File?
	How to Write output to a File
	How to Close a file?
	A Complete Example (Review)
	Exam #2

