
ECE160: Foundations of Computer Engineering I

Lecture #18 Files (1)

Instructor: Dr. Liudong Xing
SENG-2134C, lxing@umassd.edu

ECE Dept

Administrative Issues

• Lab#7 solution posted

• Homework#4 assigned
– Due 9am, Wednesday, March 22

• Today’s topics
– Repetitive algorithms (L#17, Cont’d)
– Files (L#18)

Dr. Xing 2

Dr. Xing 3

Review of Lectures #17

• Two approaches to writing repetitive algorithms
– Using loops (for, while, do…while; iterative way)
– Using recursion: is a repetitive process where a function

calls itself
• Recursive solution involves a two-way journey

– First we decompose the problem from top to bottom
– Then we solve it from bottom to top

• Base case:
– The statement that “solves” the problem
– Every recursive function must have a base case
– Once the base case has been reached, the solution begins

Dr. Xing 4

Review: factorial(n)
long factorial(int n)
{

int i;
long fact=1;
for(i=1; i<= n; i++)
{

fact = fact * i;
}
return fact;

}

>−
=

=
0 if *)1(*...*2*1
0 if 1

)(
nnn
n

nfactorial

long factorial(int n)
{

if (n == 0)
return 1;

else
return(n*factorial(n-1));

}

Recursive SolutionIterative Solution

Dr. Xing 5

Review: Fibonacci(n)
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,……

• Base cases: 0, 1
• General case:

fib(n)=fib(n-1)+ fib(n-2)

long fib(long n)

{

if ((n == 0) || (n == 1))

return n;

return(fib(n-1)+fib(n-2));

}

long fib(long n)
{

int i;
long cn = 1;
long pn = 0;
long ppn;

for (i=1; i<n; i++)
{

ppn = pn;
pn = cn;
cn = ppn + pn;

}
return cn;

}

Recursive Solution Iterative Solution

Dr. Xing 6

Agenda

• Files
– Concepts
– To create, open, close files

An Example
#include "stdio.h"
void main(void)
{

int a;
a=0;
printf(“Please input the value of variable a:\n”);
scanf_s(“%d”, &a);
printf(“The new value of variable a is %d\n.”, a);

}

Dr. Xing Lecture #18 7

When we store data in variables in our programs, they are
lost after the program ends. These data are temporarily
stored in main memory

Dr. Xing 8

How can we store data permanently?

Store them in files.

Dr. Xing 9

File

• A collection of information/related data treated
as a unit

• Saved in secondary (auxiliary) memory like
disks.

• Examples
– Your personal data files
– Video files

Dr. Xing 10

File Types

Two categories of files
• Text file

– All data are human-readable characters.
– Each line of data ends with a newline character.

• Binary file
– They are not human-readable.
– They store data in the computer’s internal computer

formats.

Dr. Xing 11

Streams
• All files in C are considered as byte streams.
• Each file ends with an EOF marker or at a specific byte

number in a system-maintained administrative data
structure

• Define a file:

– file_pointer is a pointer to a FILE structure
– A file pointer is a variable whose memory cell contains an

address instead of an int or float value

FILE *file_pointer;

Dr. Xing 12

About FILE
• FILE is a C derived data type defined in the C standard

header file stdio.h
– Include file: #include <stdio.h>

• No direct relation between the C data type FILE and
your actual file

• To manipulate a disk file, use the C data type FILE to
declare a file_pointer, then use this file_pointer to
handle your file

FILE file_pointer actual_file on the disk

Dr. Xing 13

Naming File Pointers
• Naming convention for file pointers is the same

as the naming rules for other C identifiers
• Legal examples

– FILE *ECE160;
– FILE *apple;

• Illegal examples
– FILE *2005ECE160;
– FILE *+apple;

Dr. Xing 14

After we have declared the file pointer,
how do we make a file available for us

to read?

Dr. Xing 15

Function fopen()

• Use C standard library function fopen() (in stdio.h)

• “fopen() gives us the ability to create a link between
a file stored in the secondary memory and a file
pointer. Once the link is created we can work with
the file pointer in our program to give us access to
the file to which it is linked.”

FILE file_pointer actual_file on the disk

FILE *file_pointer;

fopen()

Dr. Xing 16

How to Open a file?
• Format:

file_pointer = fopen(“file_name”, “mode”);
• mode:

– r: Open file for reading.
• If file exists, the marker is positioned at the beginning of the

file.
• If the file doesn’t exist, then error is returned.

– w: Open text file for writing.
• If file exists, it is emptied.
• If file doesn’t exist, it is created.

– a: Open text file for appending.
• If file exists, the marker is positioned at the end.
• If file doesn’t exist, it is created.

Note: in Microsoft Visual Studio, we use
fopen_s(&file_pointer, “file_name”, “mode”);

Dr. Xing 17

Example
FILE *example_ptr;
example_ptr = fopen(“lab3.cpp”, “r”);

• The file_pointer is named example_ptr
• The access_mode is “r” the files lab3.cpp is

opened for reading
• Note: file_name and access_mode are in string

literals, they must be enclosed by double
quotes!

Note: in Microsoft Visual Studio, we use
fopen_s(&example_ptr, “lab3.cpp”, “r”);

Dr. Xing 18

How to Close a file?
• After the program finishes execution, C will

automatically close all opened files
• It is a good practice to close files (to free system

resources) after they have been used!
• To close a file manually, use fclose()
• Format/prototype:

int fclose(FILE *file_pointer);
• Example:

fclose(example_ptr);
• Note: use file_pointer, not the file name to close a file!

Dr. Xing 19

Note!
• fopen() returns

– a valid address in your file variable if the open
succeeds,

– NULL (a C-defined constant for no address) if the
open failed

• fclose() returns
– an integer that is ZERO if the close succeeds,
– EOF (-1) if there is an error

Dr. Xing 20

An Example
#include "stdio.h"
void main(void)
{

FILE *fp;
if((fp = fopen("my160file.txt","r")) == NULL)
{

printf("I was not able to open file\n");
}
if(fclose(fp) == EOF)
{

printf("I was not able to close file\n");
}

}

Dr. Xing 21

Exercises (1)

• True/False
_____You must create a link between an external disk

file and a file pointer before you can read your input
data from a file

_____It is a good practice to close an input file when
you need no further access to the file

_____A file pointer is an int data type and can be
declared with other int type variables

Dr. Xing Lecture #20 22

Exercises (2)

• Find error, if any, in each statement
#Include <Stdio.h>;

File myfile;

*myfile=fopen(lab6.dat, r);

close(“myfile”);

Dr. Xing 23

Summary
• Files: a collection of information/related data treated as a unit
• How to declare a file_pointer

• How to open a file

– To create a link between a file stored in actual disk and a file pointer
– Returns a valid address if the open succeeds, otherwise NULL (a C-

defined constant for no address)

• How to close a file

– To free system resources (memory space)
– Returns integer ZERO if the close succeeds, otherwise EOF (-1)

FILE *file_pointer;

file_pointer = fopen(“file_name”, “mode”);

int fclose(FILE *file_pointer);

Dr. Xing 24

Next…

• How to read from a file
• How to write output to a file

Dr. Xing 25

How to read from a file (an example)

• Two values will be read from input file indicated by
example_ptr

• The integer value the memory cell reserved for
variable a

• The double value the memory cell reserved for b

fscanf(example_ptr, “%d%lf”, &a, &b);

Note: in Microsoft Visual Stdio, we use
fscanf_s(example_ptr, “%d%lf”, &a, &b);

Dr. Xing 26

How to write output to a file (an example)

• The values of week and year are written to an
external file that has a file pointer named
example_ptr using the format string given in
the double quotes.

fprintf(example_ptr, “week = %5d\n year = %5d\n”, week, year);

Dr. Xing 27

#include <stdio.h>
int main(void)
{
FILE *fp;
int num1 = 100;
int num2 = 200;
int num3 = 300;
int a = 0, b = 0, c = 0;

//fp = fopen("Xing_file1.txt","w");
fopen_s(&fp, "Xing_file1.txt", "w");

if (!fp)
{
printf("I was not able to open file\n");
return(1);
}

fprintf(fp, "%d\n%d\n%d\n", num1, num2, num3);

if (fclose(fp) == EOF)
{
printf("I was not able to close file\n");
return(2);
}

//fp = fopen("Xing_file1.txt","r");
fopen_s(&fp, "Xing_file1.txt", "r");

if (!fp)
{
printf("I was not able to open file\n");
return(1);
}

fscanf_s(fp, "%d%d%d", &a, &b, &c);

printf("a is %d\nb is %d\nc is %d\n",a,b,c);

if (fclose(fp) == EOF)
{
printf("I was not able to close file\n");
return(2);
}

}

A Complete
Example
(Preview)

Dr. Xing 28

Summary of Lectures #18
• Files

– A collection of information/related data treated as a unit
– How to declare a file_pointer (FILE)
– How to open a file (fopen())
– How to close a file (fclose())

Next Topics …
• How to read from a file
• How to write output to a file

Things to Do
• Homework #4 due Wednesday, March 22

	ECE160: Foundations of Computer Engineering I� �Lecture #18 Files (1)
	Administrative Issues
	Review of Lectures #17
	Review: factorial(n)
	Review: Fibonacci(n)�0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,……�
	Agenda
	An Example
	Slide Number 8
	File
	File Types
	Streams
	About FILE
	Naming File Pointers
	After we have declared the file pointer, how do we make a file available for us to read?
	Function fopen()
	How to Open a file?
	Example
	How to Close a file?
	Note!
	An Example
	Exercises (1)
	Exercises (2)
	Summary
	Next…
	How to read from a file (an example)
	How to write output to a file (an example)
	A Complete Example (Preview)
	Summary of Lectures #18

