
ECE160: Foundations of Computer Engineering I

Lecture #11 – Exam #1 Review

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.

Dr. Xing 2

Exam #1

• Time: 9:00am ~ 10:30am, Friday, Feb. 17
• Please arrive at the class on time; no make up time will

be given for late arrivals.
• Form:

– Open book open notes
– Calculators are NOT allowed

• Preparation:
– Lecture notes #2 - #10
– Homework #1 - #2
– Lab #2 - #4

Dr. Xing 3

Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)

Dr. Xing 4

Number Systems (L#2)

1. Basic number systems concepts (base,
positional/place value, symbol value)

2. How to work with numbers represented in binary,
octal, and hexadecimal number systems

3. How to convert back and forth between decimal
numbers and their binary, octal, and hexadecimal
equivalents

4. How to abbreviate binary numbers as octal or
hexadecimal numbers

5. How to convert octal and hexadecimal numbers to
binary numbers

Dr. Xing 5

Number Systems (L#2: 1)

• Basic number systems concepts
– Base: determines the magnitude of a place
– positional/place value: power of the base
– symbol value:digit x positional value

Example: consider decimal number 4538
• Base:
• The positional value of digit 5:
• The symbol value of digit 5:

10
102

5 x 102 = 500

Dr. Xing 6

• Binary (base 2)
– 0,1

• Octal (base 8)
– 0,1,2,3,4,5,6,7

• Decimal (base 10)
– 0,1,2,3,4,5,6,7,8,93,4,5,6,7,8,9

• Hexadecimal (base 16)
– 0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F

Decimal
(base 10)

Binary
(base 2)

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

Octal
(base 8)

Hexadecimal
(base 16)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

10 8

11 9

12 A

13 B

14 C

15 D

16 E

17 F

Number Systems (L#2: 2)

Dr. Xing 7

Number Systems (L#2: 3)

• Convert back and forth between decimal
numbers and their binary, octal, and
hexadecimal equivalents

o To convert any base to decimal we multiply the
decimal equivalent of each digit by its positional /
place value (a power of the base) and sum these
products

o To convert decimal numbers to any base we divide
with the corresponding base until the quotient is zero
and write the remainders in reverse order.

Dr. Xing 8

Number Systems (L#2: 4)

• How to abbreviate binary numbers as octal or
hexadecimal numbers
– To convert from binary to Hex, simply divide the

binary number into 4-bit group (from right to left)
and then write those groups over the
corresponding digits of the hex number

– To convert from binary to Octal, simply divide the
binary number into 3-bit group (from right to left)
and then write those groups over the
corresponding digits of the Octal number

Dr. Xing 9

Number Systems (L#2: 5)

• How to convert octal and hexadecimal
numbers to binary numbers
– To convert from Octal to binary, simply write

each octal digit its 3-digit binary equivalent
– To convert from Hex to binary, simply write

each hex digit its 4-digit binary equivalent

Dr. Xing 10

Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)

Dr. Xing 11

Intro. to C Programming (L#3)
1. Computer languages evolution: machine assembly
 high-level (e.g., C) …

2. A popular software development lifecycle – waterfall
model

3. The first C program

4. Identifiers and naming rules

5. Two types of errors: syntax and logic / semantics
errors

Dr. Xing 12

Intro. to C Programming (L#3: 1)
• Machine languages are binary-based code

(made of streams of 0s and 1s)
– The only language understood by computers

• High-level languages (like C) are generally
machine-independent
– Usually, several machine instructions are combined

into one high-level instruction.
– Translated into executable form using compiler and

linker in C

Dr. Xing 13

Modern Software Development
(Review)

Source Code File Compiler

Object File

Executable File
Other Object Files
(perhaps libraries) Linker

Loader

Dr. Xing 14

Software Development Lifecycle
(Review)

System
requirements

Analysis

Code

Test

Maintenance

Design

Waterfall Model

Dr. Xing 15

The first C program

/* The first C program
learned in ECE160 */

#include <stdio.h>

void main(void)

{

printf(“Hello world!”);

}

C comments

Directives indicating
to attach a file to the
beginning of the
source code prior
to compilation. This
file has info @ the
library function
printf we used in
our program

The mandatory
name for the
first function to
be executed is
main

We call the library
function printf
by using its name
followed by
parentheses

We send the
string enclosed
in parentheses
to the library
function

C statements
in program
body are
terminated
with a semicolon

The function
printf requires
the string be
enclosed in
double quotes

Braces indicate beginning
and end of function body

Void indicate that we receive
nothing from OS and return
Nothing to OS

Dr. Xing 16

Identifiers and Naming Rules

• Identifiers are used to name data and other objects
(e.g. functions) in our program.

• C is case sensitive
– Celsius, celsius, and CELSIUS are three different identifiers.

• Rules
– The first character can not be a digit. It has to be an alphabetic

character or underscore.

– The identifier name must consist only of alphabetic characters,
digits, or underscores.

– First 31 characters of an identifier are significant/used.

– DO NOT use a C reserved word /keywords (e.g., int).

Dr. Xing 17

Two Types of Errors
• Syntax: the required form of the program punctuation, keywords

(int, float, return, …) etc.
– Examples:

• putting a semicolon after main() is a compilation error
• Forgetting to terminate a comment with */ is a compilation error.

– The C compiler always catches these “syntax errors” or
“compiler errors”

• Semantics (logic): what the program means
– What you want it to do
– The C compiler cannot catch these kinds of errors!
– They can be extremely difficult to find

Dr. Xing 18

Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)

Dr. Xing 19

Standard Data Types
• void: has no values
• int: a number without fraction part

– 3 different sizes of the integer type: short int,
int, long int

– the size of int is machine dependent
– C supports logical data type through the

integer type
• char: a value that can be represented in the

computer’s alphabet.
– represented using 1 byte (ASCII code)

• float: a number with fraction part
– 3 types of floating point numbers: float,

double, long double

Dr. Xing 20

Variables

• Variables are named memory locations that have
a type, identifier, and value.

• Each variable in the program must be declared
and defined!

– Declaration: to name a variable
– Definition: to create a variable, to reserve memory for it
– Usually a variable is declared and defined at the same

time!
• The programmer must initialize any variable

requiring prescribed data when the function starts

Dr. Xing 21

Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)

Dr. Xing 22

Constants (L#5)
• Four types: Integer (13), Character (‘a’), Floating

point (2.3), String (“hello”)
• Three ways to code constants in the program:

– Literal: an unnamed constant, the data itself (3.14)

– Defined: use the preprocessor command define (e.g.: #define
PI 3.14) --- the expression that follows the name replaces the
name wherever it is found in the source program

– Memory: Use a C type qualifier: const (e.g.: const float pi =
3.14;) --- memory constants fix the contents of a memory location

Dr. Xing 23

Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)

Dr. Xing 24

Formatted Output printf() (L#6: 1)

• printf(format string, data list);
– Instructions for formatting the data, and
– The actual data to be printed.

• Conversion codes %d %c %f etc
– The number of conversion code should match the

number of data/variables that follow the “format
string”

Dr. Xing 25

Formatted Output printf() (L#6: 2)

• Field width specification: specifying the number of
digits to display

– When there are more places in the field width than digits to
be displayed, the output is right-justified.

– When there are more digits than places, the output field width
is ignored, and the entire integer is displayed.

• Flag modifiers: 0 and –
– 0: the number will be printed with leading zeros
– - (minus sign): the data are formatted left justified

• Output special characters using \

Dr. Xing 26

Formatted Input scanf() (L#7)
• Function format

– scanf(format string, address list);
– The number of conversion code should match the number of

addresses that follow the “format string”
– Each variable name in the address list must be preceded by

an ampersand &.

• You can use field width like %2d, but there is no
precision width in the input field specification. When
scanf() finds a precision, it stops processing.

Dr. Xing 27

Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)

Dr. Xing 28

C Expressions (1)
• Types of expressions

– Primary expressions: consist of only one operand
with no operator

– Binary expressions: formed by an operand-
operator-operand combination
• Multiplicative expressions: *, /, %
• Additive expressions: +, -

– Assignment expressions using assignment
operator =

– Postfix expressions: a++; a--;
– Unary expressions:

• Prefix increment/decrement: ++a; --a;
• Sizeof()
• plus/minus

Dr. Xing 29

C Expressions (2)
• A side effect is an action that results from the

evaluation of an expression: changing the value of a
variable is a side effect

– side effects take place before the expression is evaluated:
++a; --a;

– side effects take place after the expression is evaluated: a++;
a--;

• Precedence and associativity
– Precedence determines the order in which different

operations are evaluated.
– Associativity determines how operators with the same

precedence are grouped together in complex expressions
(left, right)

– Note that precedence is applied before associativity.

Dr. Xing 30

Operator Precedence (in descending order)
Postfix operators: ++, --, ..
Prefix operators: ++, --, ..
sizeof
Plus/minus signs: +,-
Logical NOT: !
Type cast: ()
Multiplicative operators: *, /, %
Addition: +, -
Shift: << , >>
Relation: < , <=, >, >= ..
Equality operations: ==, !=
Bitwise/Boolean AND: &
Bitwise/Boolean XOR: ^
Bitwise/Boolean OR: |
Logical AND: &&
Logical OR: ||
Ternary conditional operator: ?:
Assignment: = , +=, -=, etc..

Dr. Xing 31

C Expressions (3)

• Evaluating complex expressions
– Expressions without side effects
– Expressions with side effects

• Mixed type expressions
– Implicit type conversion by compiler

• In an assignment expression, the final expression value
must have the same type as the left operand, the operand
that receives the value!

• Variables with low precedence are promoted to match the
highest precedence hierarchy in the expression.

– Explicit type conversion using type cast operator
(new type) by programmers

Dr. Xing 32

Lectures #2 - #10

• Number systems (L#2)
• Introduction to C programming (L#3)
• Data types and variables (L#4)
• Constants (L#5)
• Formatted input/output (L#6 & 7)
• Expressions (L#8 & 9)
• Two-way selection: if…else (L#10)

Dr. Xing 33

Two-Way Selection if…else (L#10)

• Logical data: true (1) or false (0)
– C supports this through int type: zero (false), non-zero (true)

• 3 logical operators:
– ! NOT, && (logical AND), || (logical OR)

• 6 relational operators
< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
!= not equal

Dr. Xing 34

Two-Way Selection if…else (2)
• if…else statement

if (expression)
{
Action 1
}

else
{
Action 2
}

• Nested if…else statement: An if…else is
included within another if…else

• Dangling else problem: when there is no
matching else for every if, Solution: Always
pair an “else” to the most recent unpaired
“if” in the current block!

• Ternary conditional operator
expression1 ? expression2 : expression3
– This means that if expression1 is true, then

the overall expression evaluates to
expression 2, else it evaluates to
expression3.

Dr. Xing 35

An Example
#include "stdafx.h"
void main(void)
{

int a,b;
printf("Enter two integers:\n");
scanf("%d%d",&a, &b);
if(a >= b)

{
if(a > b)

printf("%d > %d",a,b);
else

printf("%d == %d",a,b);

}
else

{
printf("%d < %d", a, b);

}
}

Good programming style:
Using indention
Line up opening and closing braces

Dr. Xing 36

Exam #1

• Time: 9:00am ~ 10:30am, Friday, Feb. 17
• Please arrive at the class on time; no make up time will

be given for late arrivals.
• Form:

– Open book open notes
– Calculators and computers are NOT allowed

• Preparation:
– Lecture notes #2 - #10
– Homework #1 - #2
– Lab #2 - #4 Good Luck!

	ECE160: Foundations of Computer Engineering I� �Lecture #11 – Exam #1 Review
	Exam #1
	Lectures #2 - #10
	Number Systems (L#2)
	Number Systems (L#2: 1)
	Slide Number 6
	Number Systems (L#2: 3)
	Number Systems (L#2: 4)
	Number Systems (L#2: 5)
	Lectures #2 - #10
	Intro. to C Programming (L#3)
	Intro. to C Programming (L#3: 1)
	Slide Number 13
	Software Development Lifecycle (Review)
	The first C program
	Identifiers and Naming Rules
	Two Types of Errors
	Lectures #2 - #10
	Standard Data Types
	Variables
	Lectures #2 - #10
	 Constants (L#5)
	Lectures #2 - #10
	Formatted Output printf() (L#6: 1)
	Formatted Output printf() (L#6: 2)
	Formatted Input scanf() (L#7)
	Lectures #2 - #10
	C Expressions (1)
	C Expressions (2)
	Operator Precedence (in descending order)
	C Expressions (3)
	Lectures #2 - #10
	Two-Way Selection if…else (L#10)
	Two-Way Selection if…else (2)
	An Example
	Exam #1

