
ECE160: Foundations of Computer Engineering I

Lecture #7 – Formatted Input scanf()

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept

Administrative Issues

• Lab#3
– Starting on Monday, Feb. 6

• Homework #2 assigned today
– Due Friday, Feb. 10
– Please follow the “submission guidelines” available in the course

website to submit your answers to your name folder at the class
M: drive if you haven’t

– Late submission is subject to penalty.

Dr. Xing 2

Dr. Xing Lecture #7 3

Review of Lecture #6

• Formatted output function printf()
– Conversion codes %d %c %f etc

– Field width specification

– Flag modifiers: 0 and –

– Use of special characters in printf()

– Common errors

Dr. Xing Lecture #7 4

Topics

• Formatted input scanf()

Textbook: chapter 7.4

Dr. Xing Lecture #7 5

scanf()

• The C function for reading input from the user
is scanf (scan formatted)

Example:

scanf(“%d %f”, &student_age, &student_GPA);

scanf(format string, address list)

Note: Microsoft Visual Studio requires using scanf_s()

Dr. Xing Lecture #7 6

Format String

• Conversion specifiers / codes

%d - integer
%f - float
%lf - double (where lf="long float")
%c - character

There is no precision width in the input field
specification. When scanf() finds a precision, it
stops processing.

Dr. Xing Lecture #7 7

The Input List

• For each conversion code in the format string there
must be exactly one address in the address list.

• Each variable name is preceded by &, an operator
meaning “the address of”.

• Example: &student_age tells the scanf function to store
what it reads from the user at the memory address of
student_age.

Do not forget to put &

scanf(“%d %f”, &student_age, &student_GPA);

Dr. Xing Lecture #7 8

Rules (1)
• There must be a field specification (conversion specifier)

for each field/variable that is going to be read.
• Do not end the format string with a white space character.

The program will probably not run.
• With the exception of the character conversion code %c,

scanf() skips leading whitespace (leading spaces, tabs,
newlines)

• To skip leading white space when reading character data,
put a space before the field specification: “ %c”

Dr. Xing Lecture #7 9

Rules (2)
• The conversion operation processes until

– End of file is reached <ctrl + z> or <ctrl + d>
– The maximum number of characters (indicated by

the field width, e.g. %3d) have been processed
– A whitespace character is found after a digit in a

numeric specification
– An error is detected, e.g. a nonnumeric character is

found when trying to read a number

Dr. Xing Lecture #7 10

Examples
• Data to be input: 100 100.2 1

scanf(“%d %f %d”, &a, &b, &c);
– Note: the whitespace between the field specifications are not

necessary with numeric input, but it’s good to include them!

• Data to be input: 02/10/91
scanf(“%2d/%2d/%2d”, &a, &b, &c);
– Note: the slashes (/) in the format string are not a part of the

field specifications, the user must enter them exactly as shown
or scanf will stop reading

Dr. Xing Lecture #7 11

Exercises (1)

int a = 1;
int b = 2;
int c = 3;
scanf(“%d %d”, &a, &b, &c);
printf(“%d %d %d”, a, b, c);

If the input is 7 8 9
what is the output?

Choose one of
the following
a) 1 2 3
b) 7 8 9
c) 7 8 3
d) 1 2 9

Dr. Xing Lecture #7 12

Exercises (2)
What is the output of this program if the input is 100?

int c = 0;
scanf(“%d”, c);
printf(“%d”,c);

Dr. Xing Lecture #7 13

Exercise (3)
• What is the displayed output when the

following code fragment is run and the input is
the numbers 20 and 30?

int x, y;
printf(“My name is”);
printf(“ Jane Doe.”);
printf(“\nEnter two integers> ”);
scanf(“%d%d”,&x, &y);
x = x + 3;
y = x + y;
printf(“Thanks! The answer is %d.\nBye now!”,y);

Dr. Xing Lecture #7 14

Exercises (4)
• What is the output of this program if the input is 77.31?

float a=2.1;
scanf(“%5.2f”, &a);
printf(“%5.2f”, a);

Dr. Xing Lecture #7 15

Exercises (5)
• What, if anything, is printed from the following

statements, given that x =2 and y =5?
printf(“%d”,x);
printf(“%d”,x+x);
printf(“x=”);
printf(“x=%d”,x);
printf(“%d=%d”,x+y,y+x);

Dr. Xing Lecture #7 16

Common Programming Errors (1)

• Putting a semicolon after main() is a compilation
error

• Forgetting to terminate a comment with */ is a
compilation error.

• Forgetting to close the format string in printf or
scanf is a compilation error

• Using the incorrect conversion code for the data
being read or written is a run-time error.

• Not including required libraries is a linker error.

Dr. Xing Lecture #7 17

Common Programming Errors (2)

• Spelling incorrectly the name of functions or
reserved words. This produces a compilation
error.

• Forgetting the comma after the format string is
a compilation error.

• Using commas in the format string of scanf
usually results in error.

• Forgetting & in scanf results in error

Dr. Xing Lecture #7 18

Good Programming Style

• Adequate white space
• Indentation
• Meaningful variable names
• Comments

Dr. Xing Lecture #7 19

Summary of Lecture #7

• Formatted input function scanf()
– Function format

– Rules

– Examples

• Common programming errors

Dr. Xing Lecture #7 20

Things To Do

• Review lecture notes and related readings in the
textbook

• Homework

Next Topic
• Expressions

	ECE160: Foundations of Computer Engineering I� �Lecture #7 – Formatted Input scanf()
	Administrative Issues
	Review of Lecture #6
	Topics
	Slide Number 5
	Format String
	Slide Number 7
	Rules (1)
	Rules (2)
	Examples
	Exercises (1)
	Exercises (2)
	Exercise (3)
	Exercises (4)
	Exercises (5)
	Common Programming Errors (1)
	Common Programming Errors (2)
	Good Programming Style
	Summary of Lecture #7
	Things To Do

