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ECE Dept 



Administrative Issues

• Lab#6 
– Due 5pm, Wednesday, March 1

• Homework#3 
– Due Friday, March 3
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Review of Lectures #13 (Loops)

• Counter-controlled repetition vs. sentinel/event-
controlled repetition

• Three C loop statements
– while loops  
– do…while loops  
– for loops 

• break/continue statements can be used to change 
the flow of control in loops
– break is used to escape from a loop or cause a loop to 

terminate.
– continue is used to skip the remaining statements in the 

body of a structure and skip to the next iteration.

for (statement1;statement2;statement3)
{

loop_body
}

while (expression)
{ loop_body
}

do
{loop_body
} while (expression);
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Outline

• Basic concepts
• Function declaration, call, and definition 
• Function types
• Common programming errors
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What is a function?

A function is an independent module that 
somebody calls it in order to perform a 
specific task.

In general, the purpose of a function is to 
receive zero or more pieces of data, operate 
on them, and return zero or some pieces of 
data. 
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main()

• main() is also a function.

• In C, a program consists of one or more functions. 
One and only one function is called main(), and that 
is where program execution always starts. 

• Who calls main()? 

– The operating system does.

• main() can call other functions to perform some part 
of the job
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Functions and Variables
• Like variables, functions have types associated 

with them; and functions and their type must be 
declared prior to their use in a program

• Like variable names, function names must 
conform to the naming rules for identifiers  
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Identifier Name Rules (Review, L#3)
• The first character can not be a digit. It has to be an 

alphabetic character or underscore.
• The identifier name must consist only of alphabetic 

characters, digits, or underscores.
• First 31 characters of an identifier are significant/used.
• DO NOT use a C reserved word /keywords (e.g., int).
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An Example

• Define a function to compute the average of 
two integer numbers

/* defining the Function */
float average_2(int num1, int num2)
{
float local_average;
local_average =  (num1 + num2)/2.0;
return local_average;
}
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Function Usage
• Function declaration

– Function prototype

• Function call (using it)
– Statement section of the function that calls it
– It transfers program control to the function

• Function definition 
– Usually after the function that calls it
– Contains the code needed to complete the task
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An Example (Cont’d) 
#include <stdio.h>

/* Declaration of the function prototype */
float average_2(int num1, int num2);

int main(void)
{

int n1;
int n2;
int n3;
int n4;
float avg_num;
printf(“Enter  two integers: ”);
scanf(“%d %d”, &n1, &n2);

/* Calling the Function: function_name 
followed by arguments enclosed in () */

avg_num = average_2(n1,n2);

printf(“The average of the first pair  is 
%f\n”,avg_num);

printf(“Enter next two integers: ”);
scanf(“%d %d”, &n3, &n4);

/* Calling the Function again */
avg_num = average_2(n3,n4);

printf(“The average of the second pair  is 
%f\n”,avg_num);

return 0;
}

/* defining the Function to compute average of 2 
numbers */

float average_2(int num1, int num2)
{
float local_average;
local_average =  (num1 + num2)/2.0;
return local_average;

}
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Explanation

• How do we call a function?
– Write function name followed by arguments enclosed in 

parentheses
• What does a function call do?

– Transfers program control to the function
• What happens after the function finishes execution?

– Control goes back to the location at which the function was 
called

• In this example program, have we passed any 
information from average_2() to main()?
– The value of the variable local_average 
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Explanation (Cont’d)

In this example program, have we passed any 
information from main() to average_2()?

– When the function average_2 is called for the first time, the 
value of n1 in main() is assigned to the variable num1 in 
average_2, the value of n2 in main() is assigned to the 
variable num2 in average_2

– When the function average_2 is called for the second time, 
the value of n3 in main() is assigned to the variable num1 in 
average_2, the value of n4 in main() is assigned to the 
variable num2 in average_2



Dr. Xing 14

Advantages of Using Functions

• Reusability of code.
– A function can be called in many different parts of 

a program, by using a simple statement.

• Data protection.
– Data of a function are considered local to the 

function. Nobody else can manipulate them.
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Scope
• Scope determines the region of a program

in which a defined object is visible.
• Global scope.

– Variables here are visible to every part of the 
program.

• Local scope.
– Variables defined with a block {} or function have 

local scope. They are invisible outside the function 
or block.
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Types of Functions

• Like data, functions also have types. This is the type 
of the data they return.

• A function can return 
– an int, a float, etc... 
– or it can return nothing (void).

• A function can have arguments 
– int, float,etc…
– or it can have no arguments (void).
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Types of Functions (Examples)

• float average_2(int num1, int num2)

• void function_name(int arg1, int arg2, float arg3)

• int function_name(char arg1, float arg2, int arg3)

• void function_name(void)

– Example: void main(void)

• float function_name(void)
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Common Programming Errors (1)

• Make sure that the function prototype matches exactly 
the function’s definition (return type, function name, 
number, types, and order of arguments). Otherwise, 
you will get a compile error.

• Put a semicolon at the end of the function prototype.
• DO NOT use a semicolon at the end of the function 

header definition.
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Common Programming Errors (2)

• Ensure that what you are returning from the function 
matches the return type of the function. 

• The type of each function argument must be 
individually defined.

• DO NOT define a function inside another function.
• When the function has no arguments, remember to put 

the parentheses when you call them 
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An Example (revisit)
(compute the average of 2 numbers)

#include <stdio.h>

/* Declaration of the function prototype */
float average_2(int num1, int num2);

int main(void)
{

int n1;
int n2;
int n3;
int n4;
float avg_num;
printf(“Enter  two integers: ”);
scanf(“%d %d”, &n1, &n2);

/* Calling the Function: function_name 
followed by arguments enclosed in () */

avg_num = average_2(n1,n2);

printf(“The average of the first pair  is 
%f\n”,avg_num);

printf(“Enter next two integers: ”);
scanf(“%d %d”, &n3, &n4);

/* Calling the Function again */
avg_num = average_2(n3,n4);

printf(“The average of the second pair  is 
%f\n”,avg_num);

return 0;
}

/* defining the Function */
float average_2(int num1, int num2)
{
float local_average;
local_average =  (num1 + num2)/2.0;
return local_average;

}
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Exercises (1)
Find the errors, if any, in the following definitions of functions:

a) void int(void) 
{

printf(“Hello\n”);
}

b) void f1(int x, y) 
{

printf(“Hi\n”);
}

c) void  f1(int x, int y) 
{

printf(“Hi\n”);
void f2(void) 
{

printf(“Hello\n”);
}

} 

d) int f2(void) 
{

printf(“Hello\n”);
}

e)
void f3 (void) 
{

printf(“Hi\n”);
return 0;

}



Dr. Xing 22

Exercises (2)
Given the following 
function prototypes and 
variable declarations, 
find errors, if any, in the 
function calls

void func1(void);
void func2(int n, double x);
void func3(double n1, int n2, double n3, int n4);
void func4(int y, int z, int w, int x);
void main(void)
{

int a,b,c,d,e;
double r,s,t,u,v;
……

func1(a); 

func2(a, b); 

func2(r, s); 

func3(r,a,s,b); 

func3(r,a,r,a); 

func4(a,b,c,d,e); 

func4(r,s,t,u); 

}
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Summary of Lectures #14
• A function is an independent module that somebody 

calls it in order to perform a specific task.
• Every C program contains one and only one main()
• Type of a function is the type of the data it returns.
• Functions must be declared before being used in a 

program
• Information can be passed between a function and 

the function that calls it
• A list of common programming errors about 

functions
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Things To Do

• Homework #3
– Due by March 3 (Friday)

Next Topic 
• Functions (Cont’d)
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