
ECE160: Foundations of Computer Engineering I

Lecture #14 – Functions (I)

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept

Administrative Issues

• Lab#6
– Due 5pm, Wednesday, March 1

• Homework#3
– Due Friday, March 3

Dr. Xing 2

Dr. Xing 3

Review of Lectures #13 (Loops)

• Counter-controlled repetition vs. sentinel/event-
controlled repetition

• Three C loop statements
– while loops
– do…while loops
– for loops

• break/continue statements can be used to change
the flow of control in loops
– break is used to escape from a loop or cause a loop to

terminate.
– continue is used to skip the remaining statements in the

body of a structure and skip to the next iteration.

for (statement1;statement2;statement3)
{

loop_body
}

while (expression)
{ loop_body
}

do
{loop_body
} while (expression);

Dr. Xing 4

Outline

• Basic concepts
• Function declaration, call, and definition
• Function types
• Common programming errors

Dr. Xing 5

What is a function?

A function is an independent module that
somebody calls it in order to perform a
specific task.

In general, the purpose of a function is to
receive zero or more pieces of data, operate
on them, and return zero or some pieces of
data.

Dr. Xing 6

main()

• main() is also a function.

• In C, a program consists of one or more functions.
One and only one function is called main(), and that
is where program execution always starts.

• Who calls main()?

– The operating system does.

• main() can call other functions to perform some part
of the job

Dr. Xing 7

Functions and Variables
• Like variables, functions have types associated

with them; and functions and their type must be
declared prior to their use in a program

• Like variable names, function names must
conform to the naming rules for identifiers

Dr. Xing Lecture #14 8

Identifier Name Rules (Review, L#3)
• The first character can not be a digit. It has to be an

alphabetic character or underscore.
• The identifier name must consist only of alphabetic

characters, digits, or underscores.
• First 31 characters of an identifier are significant/used.
• DO NOT use a C reserved word /keywords (e.g., int).

Dr. Xing 9

An Example

• Define a function to compute the average of
two integer numbers

/* defining the Function */
float average_2(int num1, int num2)
{
float local_average;
local_average = (num1 + num2)/2.0;
return local_average;
}

Dr. Xing 10

Function Usage
• Function declaration

– Function prototype

• Function call (using it)
– Statement section of the function that calls it
– It transfers program control to the function

• Function definition
– Usually after the function that calls it
– Contains the code needed to complete the task

Dr. Xing 11

An Example (Cont’d)
#include <stdio.h>

/* Declaration of the function prototype */
float average_2(int num1, int num2);

int main(void)
{

int n1;
int n2;
int n3;
int n4;
float avg_num;
printf(“Enter two integers: ”);
scanf(“%d %d”, &n1, &n2);

/* Calling the Function: function_name
followed by arguments enclosed in () */

avg_num = average_2(n1,n2);

printf(“The average of the first pair is
%f\n”,avg_num);

printf(“Enter next two integers: ”);
scanf(“%d %d”, &n3, &n4);

/* Calling the Function again */
avg_num = average_2(n3,n4);

printf(“The average of the second pair is
%f\n”,avg_num);

return 0;
}

/* defining the Function to compute average of 2
numbers */

float average_2(int num1, int num2)
{
float local_average;
local_average = (num1 + num2)/2.0;
return local_average;

}

Dr. Xing 12

Explanation

• How do we call a function?
– Write function name followed by arguments enclosed in

parentheses
• What does a function call do?

– Transfers program control to the function
• What happens after the function finishes execution?

– Control goes back to the location at which the function was
called

• In this example program, have we passed any
information from average_2() to main()?
– The value of the variable local_average

Dr. Xing 13

Explanation (Cont’d)

In this example program, have we passed any
information from main() to average_2()?

– When the function average_2 is called for the first time, the
value of n1 in main() is assigned to the variable num1 in
average_2, the value of n2 in main() is assigned to the
variable num2 in average_2

– When the function average_2 is called for the second time,
the value of n3 in main() is assigned to the variable num1 in
average_2, the value of n4 in main() is assigned to the
variable num2 in average_2

Dr. Xing 14

Advantages of Using Functions

• Reusability of code.
– A function can be called in many different parts of

a program, by using a simple statement.

• Data protection.
– Data of a function are considered local to the

function. Nobody else can manipulate them.

Dr. Xing 15

Scope
• Scope determines the region of a program

in which a defined object is visible.
• Global scope.

– Variables here are visible to every part of the
program.

• Local scope.
– Variables defined with a block {} or function have

local scope. They are invisible outside the function
or block.

Dr. Xing 16

Types of Functions

• Like data, functions also have types. This is the type
of the data they return.

• A function can return
– an int, a float, etc...
– or it can return nothing (void).

• A function can have arguments
– int, float,etc…
– or it can have no arguments (void).

Dr. Xing 17

Types of Functions (Examples)

• float average_2(int num1, int num2)

• void function_name(int arg1, int arg2, float arg3)

• int function_name(char arg1, float arg2, int arg3)

• void function_name(void)

– Example: void main(void)

• float function_name(void)

Dr. Xing 18

Common Programming Errors (1)

• Make sure that the function prototype matches exactly
the function’s definition (return type, function name,
number, types, and order of arguments). Otherwise,
you will get a compile error.

• Put a semicolon at the end of the function prototype.
• DO NOT use a semicolon at the end of the function

header definition.

Dr. Xing 19

Common Programming Errors (2)

• Ensure that what you are returning from the function
matches the return type of the function.

• The type of each function argument must be
individually defined.

• DO NOT define a function inside another function.
• When the function has no arguments, remember to put

the parentheses when you call them

Dr. Xing 20

An Example (revisit)
(compute the average of 2 numbers)

#include <stdio.h>

/* Declaration of the function prototype */
float average_2(int num1, int num2);

int main(void)
{

int n1;
int n2;
int n3;
int n4;
float avg_num;
printf(“Enter two integers: ”);
scanf(“%d %d”, &n1, &n2);

/* Calling the Function: function_name
followed by arguments enclosed in () */

avg_num = average_2(n1,n2);

printf(“The average of the first pair is
%f\n”,avg_num);

printf(“Enter next two integers: ”);
scanf(“%d %d”, &n3, &n4);

/* Calling the Function again */
avg_num = average_2(n3,n4);

printf(“The average of the second pair is
%f\n”,avg_num);

return 0;
}

/* defining the Function */
float average_2(int num1, int num2)
{
float local_average;
local_average = (num1 + num2)/2.0;
return local_average;

}

Dr. Xing 21

Exercises (1)
Find the errors, if any, in the following definitions of functions:

a) void int(void)
{

printf(“Hello\n”);
}

b) void f1(int x, y)
{

printf(“Hi\n”);
}

c) void f1(int x, int y)
{

printf(“Hi\n”);
void f2(void)
{

printf(“Hello\n”);
}

}

d) int f2(void)
{

printf(“Hello\n”);
}

e)
void f3 (void)
{

printf(“Hi\n”);
return 0;

}

Dr. Xing 22

Exercises (2)
Given the following
function prototypes and
variable declarations,
find errors, if any, in the
function calls

void func1(void);
void func2(int n, double x);
void func3(double n1, int n2, double n3, int n4);
void func4(int y, int z, int w, int x);
void main(void)
{

int a,b,c,d,e;
double r,s,t,u,v;
……

func1(a);

func2(a, b);

func2(r, s);

func3(r,a,s,b);

func3(r,a,r,a);

func4(a,b,c,d,e);

func4(r,s,t,u);

}

Dr. Xing 23

Summary of Lectures #14
• A function is an independent module that somebody

calls it in order to perform a specific task.
• Every C program contains one and only one main()
• Type of a function is the type of the data it returns.
• Functions must be declared before being used in a

program
• Information can be passed between a function and

the function that calls it
• A list of common programming errors about

functions

Dr. Xing 24

Things To Do

• Homework #3
– Due by March 3 (Friday)

Next Topic
• Functions (Cont’d)

	ECE160: Foundations of Computer Engineering I� �Lecture #14 – Functions (I)
	Administrative Issues
	Review of Lectures #13 (Loops)
	Outline
	What is a function?
	main()
	Functions and Variables
	Identifier Name Rules (Review, L#3)
	An Example
	Function Usage
	An Example (Cont’d)
	Explanation
	Explanation (Cont’d)
	Advantages of Using Functions
	Scope
	Types of Functions
	Types of Functions (Examples)
	Common Programming Errors (1)
	Common Programming Errors (2)
	An Example (revisit)�(compute the average of 2 numbers)
	Exercises (1)
	Exercises (2)
	Summary of Lectures #14
	Things To Do

