
ECE160: Foundations of Computer Engineering I

Lecture #13 – Loops

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept .

Administrative Issues

• Homework #3 assigned today
– Due 9am, Friday, March 3

• Lab #6 starts on Monday, Feb. 27
– Due 5pm, Wednesday, March 1

Dr. Xing

Dr. Xing 3

Review of Lecture #12

• Multi-way selection using
– switch statement: can be used only when the

selection condition can be reduced to an
integral expression!

– if-else-if control structure: no the above
limitation

Dr. Xing Lecture #13 4

Outline (Loops)

• Basic concepts and forms

• Three C loop statements
– while loops
– do…while loops
– for loops

• break/continue statements

Dr. Xing Lecture #13 5

Loops
• A loop is a group of instructions that the

computer executes repeatedly while some
condition stays true.

• Two basic forms of loops:
– Counter-controlled repetition.
– Event/sentinel-controlled repetition.

Dr. Xing Lecture #13 6

Counter-Controlled Loops
• A control variable is used to count the number of repetitions.

#include <stdio.h>
void main(void)
{

int counter; /* control variable*/
counter=1;
while (counter <= 23)
{

printf("The value of mycounter is:%d\n", counter);
++counter;

}
}

Dr. Xing Lecture #13 7

Event/Sentinel-Controlled Loops

• Used when we don’t know in advance the
number of repetitions

• The loop includes statements that obtain data
every time the loop is executed.

• The loop ends when the loop control
expression changes from true to false

Dr. Xing Lecture #13 8

An Example of
Sentinel/Event-Controlled Repetition

#include <stdio.h>
void main(void)
{

int x=0;
int sum = 0;
printf("Enter your numbers to add. Enter <EOF> if you wish to stop \n");
/* EOF is <ctrl+z>*/
while(scanf(“%d”, &x) != EOF)

sum+=x;
printf(" I am out of the loop \n");
printf(“The total is %d\n”, sum);

}

Dr. Xing Lecture #13 9

Agenda

Basic concepts and forms

• Three C loop statements
– while loops
– do…while loops
– for loops

• break/continue statements

Dr. Xing Lecture #13 10

The while Loop

• Syntax

while (expression)
{

statement-1;
statement-2;

……
statement-n;

}

• A pretest loop: in each iteration,
the loop control expression is
tested first. If it’s true, the loop
body (statements between the
braces) is executed. If it’s false,
the loop is terminated

• Braces are not required if the loop
body consists of only one
statement

• No semicolon is needed at the
end of the while statement!

Dr. Xing Lecture #13 11

Exercises (1)
• Assume int b=1; find error(s), if any, in the

following while statements

while (b<7):
{

printf(“b=%d\n”, b);
b++;

};

while (b<7)
{

printf(“b=%d\n”, b);
b--;

}

Dr. Xing 12

Exercises (2)
• Assume int b=1; find error(s), if any, in the

following while statements

while (7)
printf(“hello\n”);

while (3+1==7)
{

printf(“b=%d\n”, b);
b++;

}

Dr. Xing 13

Operator Precedence (in descending order)
Postfix operators: ++, --, ..
Prefix operators: ++, --, ..
sizeof
Plus/minus signs: +,-
Logical NOT: !
Type cast: ()
Multiplicative operators: *, /, %
Addition: +, -
Shift: << , >>
Relation: < , <=, >, >= ..
Equality operations: ==, !=
Bitwise/Boolean AND: &
Bitwise/Boolean XOR: ^
Bitwise/Boolean OR: |
Logical AND: &&
Logical OR: ||
Ternary conditional operator: ?:
Assignment: = , +=, -=, etc..

Dr. Xing 14

Exercise (3)

• Write a program that reads 4 integers from the
keyboard, compute their sum and prints it.

Using counter-controlled Loop!

Dr. Xing 15

Exercise (4)

• Write a program that computes the sum for
any number of integers entered from the
keyboard.

Using event-controlled Loop!

Dr. Xing Lecture #14&15 16

C Loop Statements

while loops
• do…while loops
• for loops

Dr. Xing 17

The do…while Loop

• Syntax

do
{

statement-1;
statement-2;

……
statement-n;

} while (expression);

• A post-test loop: in each iteration, the
loop body is executed. Then the loop
control expression is tested. If it’s
true, a new iteration is started;
otherwise, the loop terminates

• Braces are not required if the loop
body consists of only one statement

• The loop body is executed at least
once

• Semicolon is needed at the end of
the do…while statement!!

Dr. Xing Lecture #13 18

An Example
#include <stdio.h>

void main(void)
{

int counter;
counter=1;

do
{

printf("The value of counter is %d\n", counter);
} while(++counter <= 3);

} Not required!

Dr. Xing 19

while vs. do…while
while (expression)

{
statement-1;
statement-2;

……
statement-n;

}

• Pre-test: loop-continuation
condition is tested before the
loop.

do
{

statement-1;
statement-2;

……
statement-n;

} while (expression);

• Post-test: loop-continuation
condition is tested after the
loop.

Braces are not required if the loop body consists of only one
statement

Dr. Xing 20

C Loop Statements

while loops
 do…while loops
• for loops

Dr. Xing 21

The for Loop
for(statement1; statement2; statement3)
{

loop_body
}

• statement1: contains the initial value of the control variable
• statement2: contains the final value of the control variable
• statement3: increments/decrements the control variable
• Braces are not required if the loop body consists of only one

statement
• Pre-test: loop-continuation condition (statement2) is tested before

the loop.
• Example:

for(counter=1; counter <= 15; counter++)
printf(“hello %d\n”, counter);

Dr. Xing 22

An Example

#include <stdio.h>

void main(void)
{

int a;
for(a=10; a>=1; a--)

printf("The value of a is: %d\n",a);

}

In a for loop, the starting counter value can be
larger than the ending counter value!

Dr. Xing 23

Equivalent to a while Loop

for(counter=1; counter <= 15; counter++)
printf(“hello %d\n”, counter);

? Equivalent while loop

Dr. Xing 24

Equivalent to a while Loop

for(counter=1; counter <= 15; counter++)
printf(“hello %d\n”, counter);

counter=1;
while (counter<=15)
{

printf(“hello %d\n”, counter);
counter++;

}

Initialization

Test expression
“Increment”
expression

Dr. Xing 25

Note on for loops!
• The for loop is used when your loop is to be executed a

known number of times!

• The 3 expressions in the for structure are optional. The
two semicolons are required.
– If the counter variable is being initialized elsewhere in the

program, then statement1 can be omitted.

– If statement2 is omitted, then C assumes the testing condition
is true and creates an infinite loop.

– Statement3 can be omitted if the counter variable is being
incremented (or decremented) elsewhere in the program.

Dr. Xing 26

Exercise (5)

Find error(s), if any, in the following for statements

• for (day=1,day<3,day++) printf(“good morning\n”);

• for (day=3;day<=10;day++) ;

• for (day=7;day<3;day++) printf(“good morning\n”);

• for (day=7;day<7;day--) printf(“good morning\n”);

Dr. Xing 27

The Nested for Loop
• Loop(s) within a loop
• What’s the output of this program?

#include <stdio.h>
void main(void)
{

int a;
int b;
for(a =1; a <= 3; a++)

{
for (b=1; b<=4; b++)

printf("%d", a);
printf(“\n”);

}
}

Dr. Xing 28

Agenda
• Basic concepts and forms

• Three C loop statements
– while loops
– do…while loops
– for loops

• break/continue statements

Dr. Xing 29

break/continue
• The break and continue statements are used in

loops to change the flow of control.

• break is used to escape from a loop (causes a
loop to terminate).

• continue is used to skip the remaining
statements in the body of a structure and skip
to the next iteration.

Dr. Xing 30

break example
#include "stdio.h"

void main(void)
{

int a;
for(a =1; a <= 7; a++)
{

if(a == 4)
break;

printf("%d\n", a);
}
printf("I got out of the loop at a==%d\n",a);

}

For good programming
style, break statements
should be avoided!

What is the output of the program?

Dr. Xing 31

Note on break!

• The break statement
terminates only the
inner loop – the one
you are currently in if
you are in a series of
nested loops!

while (condition1)
{

……
/*some while processing*/

for (s1;s2;s3)
{

…
if (condition2)

break;
…

}/*for loop ends here*/

……
/*more while processing*/

} /*while loop ends here*/

The break statement
takes you out of the
inner for loop. The
while loop is still alive!

Dr. Xing 32

continue statement

• continue is used to skip the remaining
statements in the body of a structure and
skip to the next iteration.

• It does not terminate the loop but simply
transfers to the testing expression in
while and do…while statements and
transfers to the updating expression
statement3 in a for loop.

Dr. Xing 33

continue Example (1)

#include <stdio.h>
void main(void)
{

int a;
for(a =1; a <= 7; a++)
{

if (a == 4)
continue;

printf("%d\n",a);
}

}

What is the output of the program?

Dr. Xing 34

Note on continue

#include "stdafx.h"
void main(void)
{

int a;
for(a =1; a <= 7; a++)
{

if (a == 4)
continue;

printf("%d\n",a);
}

}

For good programming
style, continue should be
avoided!

You can eliminate the need
for continue by simply
reversing the conditional test
of if!

if (a!=4)
printf(“%d\n”, a);

Dr. Xing 35

Good Programming Practices

• Use integer variables in controlling loops.

• Indent appropriately.
• Avoid using break; or continue; in the loops

• Do not use loop nesting more than 3 levels
deep.

Dr. Xing 36

Summary of Lectures #13
• Counter-controlled repetition vs. sentinel/event-

controlled repetition

• Three C loop statements
– while loops (pre-test)
– do…while loops (post-test)
– for loops (pre-test)

• break/continue statements can be used to change
the flow of control in loops

Dr. Xing 37

Things To Do

• Review Lecture Notes
• Run the programs in the exercises and examples

Next Topic
• Functions

	ECE160: Foundations of Computer Engineering I� �Lecture #13 – Loops
	Administrative Issues
	Review of Lecture #12
	Outline (Loops)
	Loops
	Counter-Controlled Loops
	Event/Sentinel-Controlled Loops
	An Example of �Sentinel/Event-Controlled Repetition
	Agenda
	The while Loop
	Exercises (1)
	Exercises (2)
	Operator Precedence (in descending order)
	Exercise (3)
	Exercise (4)
	C Loop Statements
	The do…while Loop
	An Example
	while vs. do…while
	C Loop Statements
	The for Loop
	An Example
	Equivalent to a while Loop
	Equivalent to a while Loop
	Note on for loops!
	Exercise (5)
	The Nested for Loop
	Agenda
	break/continue
	break example
	Note on break!
	continue statement
	continue Example (1)
	Note on continue
	Good Programming Practices
	Summary of Lectures #13
	Things To Do

