
ECE160: Foundations of Computer Engineering I

Lecture #13 – Loops

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept .



Administrative Issues  

• Homework #3 assigned today  
– Due 9am, Friday, March 3

• Lab #6 starts on Monday, Feb. 27   
– Due 5pm, Wednesday, March 1

Dr. Xing 
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Review of Lecture #12

• Multi-way selection using
– switch statement: can be used only when the 

selection condition can be reduced to an 
integral expression!

– if-else-if control structure: no the above 
limitation
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Outline (Loops)

• Basic concepts and forms

• Three C loop statements
– while loops
– do…while loops
– for loops

• break/continue statements
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Loops
• A loop is a group of instructions that the 

computer executes repeatedly while some 
condition stays true.

• Two basic forms of loops:
– Counter-controlled repetition.
– Event/sentinel-controlled repetition.
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Counter-Controlled Loops
• A control variable is used to count the number of repetitions.

#include <stdio.h>
void main(void)
{

int counter;  /* control variable*/
counter=1;
while (counter <= 23)
{

printf("The value of mycounter is:%d\n", counter);
++counter;

}
}
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Event/Sentinel-Controlled Loops

• Used when we don’t know in advance the 
number of repetitions

• The loop includes statements that obtain data 
every time the loop is executed.

• The loop ends when the loop control 
expression changes from true to false
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An Example of 
Sentinel/Event-Controlled Repetition

#include <stdio.h>
void main(void)
{

int x=0;
int sum = 0;
printf("Enter your numbers to add. Enter <EOF> if you wish to stop \n");
/* EOF is <ctrl+z>*/
while(scanf(“%d”, &x) != EOF)

sum+=x;
printf(" I am out of the loop \n");
printf(“The total is %d\n”, sum);

}
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Agenda

Basic concepts and forms

• Three C loop statements
– while loops
– do…while loops
– for loops

• break/continue statements
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The while Loop

• Syntax

while (expression)
{

statement-1;
statement-2;

……
statement-n;

}

• A pretest loop: in each iteration, 
the loop control expression is 
tested first. If it’s true, the loop 
body (statements between the 
braces) is executed. If it’s false, 
the loop is terminated

• Braces are not required if the loop 
body consists of only one 
statement

• No semicolon is needed at the 
end of the while statement!
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Exercises (1)
• Assume int b=1; find error(s), if any, in the 

following while statements

while (b<7): 
{

printf(“b=%d\n”, b); 
b++;

};

while (b<7)
{

printf(“b=%d\n”, b); 
b--;

}
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Exercises (2)
• Assume int b=1; find error(s), if any, in the 

following  while statements

while (7) 
printf(“hello\n”); 

while (3+1==7)
{

printf(“b=%d\n”, b); 
b++;

}
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Operator Precedence (in descending order)
Postfix operators: ++, --, ..
Prefix operators: ++, --, ..
sizeof
Plus/minus signs: +,-
Logical NOT: !
Type cast: ()
Multiplicative operators:  *, /, %
Addition: +, -
Shift: << , >>
Relation: < , <=, >, >= ..
Equality operations: ==, !=
Bitwise/Boolean AND: &
Bitwise/Boolean XOR: ^
Bitwise/Boolean OR: |
Logical AND: &&
Logical OR: ||
Ternary conditional operator: ?:
Assignment: = , +=, -=, etc..
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Exercise (3)

• Write a program that reads 4 integers from the 
keyboard, compute their sum and prints it.

Using counter-controlled Loop!
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Exercise (4)

• Write a program that computes the sum for 
any number of integers entered from the 
keyboard.

Using event-controlled Loop!
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C Loop Statements

while loops
• do…while loops
• for loops
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The do…while Loop

• Syntax

do
{

statement-1;
statement-2;

……
statement-n;

} while (expression);

• A post-test loop: in each iteration, the 
loop body is executed. Then the loop 
control expression is tested. If it’s 
true, a new iteration is started; 
otherwise, the loop terminates

• Braces are not required if the loop 
body consists of only one statement

• The loop body is executed at least 
once

• Semicolon is needed at the end of 
the do…while statement!!
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An Example
#include <stdio.h>

void main(void)
{

int counter;
counter=1;

do 
{

printf("The value of counter is %d\n", counter);
}  while(++counter <= 3);

} Not required!



Dr. Xing 19

while vs. do…while
while (expression)

{
statement-1;
statement-2;

……
statement-n;

}

• Pre-test: loop-continuation 
condition is tested before the 
loop.

do
{

statement-1;
statement-2;

……
statement-n;

} while (expression);

• Post-test: loop-continuation 
condition is tested after the 
loop.

Braces are not required if the loop body consists of only one 
statement
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C Loop Statements

while loops
 do…while loops
• for loops
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The for Loop
for(statement1; statement2; statement3)
{

loop_body
}

• statement1: contains the initial value of the control variable
• statement2: contains the final value of the control variable
• statement3: increments/decrements the control variable
• Braces are not required if the loop body consists of only one 

statement
• Pre-test: loop-continuation condition (statement2) is tested before 

the loop.
• Example: 

for(counter=1; counter <= 15; counter++)
printf(“hello %d\n”, counter);
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An Example

#include <stdio.h>

void main(void)
{

int a;
for(a=10; a>=1; a--) 

printf("The value of a is: %d\n",a);

}

In a for loop, the starting counter value can be 
larger than the ending counter value!
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Equivalent to a while Loop

for(counter=1; counter <= 15; counter++)
printf(“hello %d\n”, counter);

? Equivalent while loop



Dr. Xing 24

Equivalent to a while Loop

for(counter=1; counter <= 15; counter++)
printf(“hello %d\n”, counter);

counter=1;
while (counter<=15)
{

printf(“hello %d\n”, counter);
counter++;

}

Initialization

Test expression
“Increment” 
expression
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Note on for loops!
• The for loop is used when your loop is to be executed a 

known number of times!

• The 3 expressions in the for structure are optional. The 
two semicolons are required.
– If the counter variable is being initialized elsewhere in the 

program, then statement1 can be omitted.

– If statement2 is omitted, then C assumes the testing condition 
is true and creates an infinite loop.

– Statement3 can be omitted if the counter variable is being 
incremented (or decremented) elsewhere in the program.
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Exercise (5)

Find error(s), if any, in the following for statements

• for (day=1,day<3,day++) printf(“good morning\n”);

• for (day=3;day<=10;day++) ;

• for (day=7;day<3;day++) printf(“good morning\n”);

• for (day=7;day<7;day--) printf(“good morning\n”);
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The Nested for Loop
• Loop(s) within a loop
• What’s the output of this program?

#include <stdio.h>
void main(void)
{

int a;
int b;
for(a =1; a <= 3; a++)

{
for (b=1; b<=4; b++)

printf("%d", a);
printf(“\n”);

}
}
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Agenda  
• Basic concepts and forms

• Three C loop statements
– while loops
– do…while loops
– for loops

• break/continue statements
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break/continue
• The break and continue statements are used in 

loops to change the flow of control.

• break is used to escape from a loop (causes a 
loop to terminate).

• continue is used to skip the remaining 
statements in the body of a structure and skip 
to the next iteration.
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break example
#include "stdio.h"

void main(void)
{

int a;
for(a =1; a <= 7; a++) 
{

if(a == 4)
break;

printf("%d\n", a);
}
printf("I got out of the loop at a==%d\n",a);

}

For good programming 
style, break statements 
should be avoided!

What is the output of the program?
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Note on break!

• The break statement 
terminates only the 
inner loop – the one 
you are currently in if 
you are in a series of 
nested loops!

while   (condition1)
{

……
/*some while processing*/

for (s1;s2;s3)
{

…
if (condition2)

break;
…

}/*for loop ends here*/

……
/*more while processing*/

} /*while loop ends here*/

The break statement 
takes you out of the 
inner for loop. The 
while loop is still alive!
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continue statement

• continue is used to skip the remaining 
statements in the body of a structure and 
skip to the next iteration.

• It does not terminate the loop but simply 
transfers to the testing expression in 
while and do…while statements and 
transfers to the updating expression 
statement3 in a for loop.
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continue Example (1)

#include <stdio.h>
void main(void)
{

int a;
for(a =1; a <= 7; a++) 
{

if (a == 4)
continue;

printf("%d\n",a);
}

}

What is the output of the program?
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Note on continue

#include "stdafx.h"
void main(void)
{

int a;
for(a =1; a <= 7; a++) 
{

if (a == 4)
continue;

printf("%d\n",a);
}

}

For good programming 
style, continue should be 
avoided!

You can eliminate the need 
for continue by simply 
reversing the conditional test 
of if!

if (a!=4)
printf(“%d\n”, a);
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Good Programming Practices

• Use integer variables in controlling loops.

• Indent appropriately.
• Avoid using break; or continue; in the loops

• Do not use loop nesting more than 3 levels 
deep.
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Summary of Lectures #13
• Counter-controlled repetition vs. sentinel/event-

controlled repetition

• Three C loop statements
– while loops (pre-test)
– do…while loops (post-test)
– for loops (pre-test)

• break/continue statements can be used to change 
the flow of control in loops
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Things To Do

• Review Lecture Notes
• Run the programs in the exercises and examples

Next Topic 
• Functions


	ECE160: Foundations of Computer Engineering I� �Lecture #13 – Loops
	Administrative Issues  
	Review of Lecture #12
	Outline (Loops)
	Loops
	Counter-Controlled Loops
	Event/Sentinel-Controlled Loops
	An Example of �Sentinel/Event-Controlled Repetition
	Agenda
	The while Loop
	Exercises (1)
	Exercises (2)
	Operator Precedence (in descending order)
	Exercise (3)
	Exercise (4)
	C Loop Statements
	The do…while Loop
	An Example
	while vs. do…while 
	C Loop Statements
	The for Loop
	An Example
	Equivalent to a while Loop
	Equivalent to a while Loop
	Note on for loops!
	Exercise (5)
	The Nested for Loop
	Agenda  
	break/continue
	break example
	Note on break!
	continue statement
	continue Example (1)
	Note on continue
	Good Programming Practices
	Summary of Lectures #13
	Things To Do

