UNIVERSITY OF MASSACHUSETTS DARTMOUTH

ECE160: Foundations of Computer Engineering I

Lecture \#12 -
Decision Making (II): multi-way selection

Instructor: Dr. Liudong Xing SENG-213C, Ixing@umassd.edu ECE Dept.

Administrative Issues

- Lab\#5
- Review Exam\#1 problems
- due 5pm, Thursday, Feb. 23
- Today's topics
- Lecture\#12 (Multi-way selection)
- Lecture\#13 (Loops)

Review of Lectures \#10 (1)

- Logical data: true (1) or false (0)
- C supports this through int type: zero (false), non-zero (true)
- 3 logical operators:
- ! NOT, \&\& (logical AND), || (logical OR)
- 6 relational operators

$<$	less than
$>$	greater than
$<=$	less than or equal
$>=$	greater than or equal
$==$	equal
!=	not equal

Review of Lectures \#10 (2)

- Two-way selection:
if...else statement
if (expression) \{ Action 1
\}
else
\{
Action 2
\}
- Nested if...else statement: An if...else is included within another if...else
- Dangling else problem: when there is no matching else for every if, Solution: Always pair an "else" to the most recent unpaired "if" in the current block!
- Ternary conditional operator expression1 ? expression2 : expression3
- This means that if expression1 is true, then the overall expression evaluates to expression 2, else it evaluates to expression3.

Topics

- Multi-way selection
- switch statement
- if-else-if control structure

Multi-Way Selection

- C also provides multi-way selection concept
- Choose among several alternatives
- Two methods
- switch statement
- if-else-if control structure (a convenient style to the nested if...else)

switch statements

switch (expression)
\{
case constant-1:
statements1
break;
case constant-2:
statoments2
break;
case constant-3:
statements3
break;

default:

statements
break;
\}

An Example

```
#include <stdio.h>
void main(void)
{
        char c;
        printf("Enter a stock rating:\n");
        scanf_s("%c", &c);
        switch (c)
        {
            case 'A':
                printf("This is an excellent stock\n");
                    break;
            case 'B':
                    printf("This is an OK stock\n");
                                    break;
            case 'C':
                printf("This is not a good stock\n");
                                    break;
            default:
                printf(" The stock rating you entered does not match our records\n");
    } /*end of switch*/
}

\section*{Exercise (1)}
- Please enter, compile and run the program on slide 8
- Try the following inputs:
- A
- a
- B
\(-\mathrm{C}\)
- E
- Remove all the break; and see what happens.
- Remove the default case and see what happens.

\section*{switch statements (Rules)}
```

switch (expression)
statements
break;
case constant-2:
statements
break;
case constant-3:
statements
break;
default:
}

```
```

{

```
{
    case constant-1:
```

 case constant-1:
    ```
```

 statements
 break;
    ```
- The control expression that switch tests must be an integral type, i.e., it can not be a float or a double for example.
- The expression followed by each case label must be a constant expression.
- Two case labels can not have the same value.
- However, two cases can have the same statements.
- The switch can include at most one default label. And it can be coded anywhere, but is traditionally coded last.

\section*{Note!}

\title{
The switch statements can be used only when the selection condition can be reduced to an integral expression!
}

\section*{Agenda}
- Multi-way selection
- switch statement
- if-else-if control structure
```

if (expression-1)
{
statement-block-1
}
else if (expression-2)
{
statement-block-2
}
else if (expression-n)
}
else
{
statement-block-n+1
}

```

\section*{Exercise (2)}
- Write a if-else-if statement that can convert a numeric score to a letter grade
- 90 or more \(\rightarrow \mathrm{A}\)
\(-80-90 \rightarrow \mathrm{~B}\)
\(-70-80 \rightarrow C\)
\(-60-70 \rightarrow \mathrm{D}\)
- Below \(60 \rightarrow\) F

\section*{Exercise (3)}
- Recode the score-to-grade conversion problem on Slide 14 using the switch statement

\section*{Review Questions (True/False)}
- ___Multiway selection can be accomplished using either the switch statement or an if-else-if format
- ___The case constants within a switch statement must be arranged in sequence, such as 10, 11, 12, and SO On
- ___ A switch statement can be replaced by an if-else-if control structure
- ___ A switch statement must contain a default case section
- ___The switch statement is used to make a decision between many alternatives when different conditions can be expressed as integral values

\section*{Summary of Lecture \#12}
- Multi-way selection using
- switch statement: can be used only when the selection condition can be reduced to an integral expression!
- if-else-if control structure: no the above limitation

\section*{Things To Do}
- Review Exam\#1```

