
ECE160: Foundations of Computer Engineering I

Lecture #6 – Formatted Output prinf()

Instructor: Dr. Liudong Xing
SENG-213C, lxing@umassd.edu

ECE Dept.

Administrative Issues
• Homework #1 due Monday, Jan. 30 (Today)

– Please follow the “submission guidelines” available in the course
website to submit your answers to your name folder at the class
M: drive if you haven’t

– Late submission is subject to penalty.

• Lab#2 assigned
– Due by 5pm, Wednesday, Feb. 1

• Lab#1 grade is available from M: drive
– Please send your grade concern to TA Peter (glv@umassd.edu)

and cc to me if there is any

Dr. Xing 2

Dr. Xing 3

Review of Lecture #5

• Constants
– Four types: integer, floating point, character, string
– Three ways to code constants in the program:

• Literal: an unnamed constant used to specify data

• Defined: use the preprocessor command #define name
expression (the expression that follows the name in the
command replaces the name wherever it is found in the
source program)

• Memory: use a C type qualifier: const type identifier =
value; (memory constants fix the contents of a memory
location)

Dr. Xing Lecture #6 4

Outline

• Overview on formatted input/output
• Formatted output printf()
• Formatted input scanf() (Lecture#7)

Dr. Xing Lecture #6 5

Formatted Input/Output

• C gives us the ability to read data from the
keyboard and print data on the monitor.

• The mechanism through which input and output
happens in C is a file.
– The keyboard is considered the standard input file,

which is buffered, that is we can change our input,
using the backspace key, prior to pressing the Enter
key.

– The monitor is the standard output file.

Dr. Xing Lecture #6 6

Formatted Input/Output

• Formatted input in C is done through function scanf()
• Formatted output in C is done through function printf()

• A function is a piece of code which performs a specific
task.
– A function is called or invoked, which causes it to

execute.
– A function is composed of the function name, an open

parenthesis, a set of function arguments separated by
commas, and a close parenthesis:

function_name(arg1, arg2, arg3….)

Dr. Xing Lecture #6 7

Format Output

Textbook: Chapter 7.1, 7.2

Dr. Xing Lecture #6 8

printf()

• printf() needs two things:
– Instructions for formatting the data, and
– The actual data to be printed.

• printf(format string, data list);

Dr. Xing Lecture #6 9

Example

printf(“Hello! You are customer number: %d\n”, a);

– The format string is the text that is to be displayed on the screen.
– It is enclosed in a set of quotation marks
– The % characters are called placeholders. They indicate the

display position for variables whose values are to be displayed.
– \n prints a newline character.

– The variable names to be displayed are specified in the data list
and appear in the same order as their placeholders.

Dr. Xing Lecture #6 10

Placeholders

• All placeholders begin with a “%”.

• The text after “%” indicates how to format the
output, i.e., what kind of variable it is -- conversion
code

• The number of conversion code should match the
number of variables that follow the “format string”

Dr. Xing Lecture #6 11

Conversion Codes/Specifiers
(Examples)

%d decimal number (int, e.g. 9, 10)
%f floating-point number (float or double, e.g. 3.14)
%c character (char, e.g., ‘a’, ‘b’)
%e floating point number in scientific notation (e.g.,

5.77748e+05 which equals 5.7748*105)
%g floating point number in e-format or f-format,

whichever is shorter
%s string (e.g., “Hello” or “abc”)

Dr. Xing Lecture #6 12

Customizing Integer Output

Dr. Xing Lecture #6 13

Customizing Integer Output (1)

• “%d” is used to display an integer variable/value

• “%hd” is used to display a short integer variable/value

• “%Ld” is used to display a long integer variable/value

They can be altered to format how
the number is displayed.

Dr. Xing Lecture #6 14

Customizing Integer Output (2)

• Instead of “%d”, use a “%Xd” where the X is an integer
that is the field width, specifying the number of digits
to display.

• The negative sign (for negative integers) is also
considered a digit here

• For example,
– “%6d” displays 6 digits of the result (integer)
– “%2hd” displays 2 digits of the result (short integer)
– “%8Ld” displays 8 digits of the result (long integer)

Dr. Xing Lecture #6 15

Customizing Integer Output (3)

• When there are more places in the field width
than digits to be displayed, the output is right-
justified.

• When there are more digits than places, the
output field width is ignored, and the entire
integer is displayed.

Dr. Xing Lecture #6 16

Examples

Value %d %4d
12 12 12

123 123 123
1234 1234 1234

12345 12345 12345

right-justified

Dr. Xing Lecture #6 17

Exercises (1)

What will the following printf() print out?

printf(“The number%d wins!”, 5321);

printf(“The number%6d wins!”, 5321);

Dr. Xing Lecture #6 18

Customizing Integer Output (4)

• When there is a width specification, a flag modifier can
be used to alter the display format
– 0: the number will be printed with leading zeros
– - (minus sign): the data are formatted left justified (data are

pushed to the left and spaces are used to fill in the right
portion of the width specification)

• For example,
– “%-6d” displays 6 digits of the result, left justified
– “%06d” displays 6 digits of the result, leading zeros

Dr. Xing Lecture #6 19

Exercises (2)

What will the following printf() print out?

printf(“The number%6d wins!\n”, 5321);
printf(“The number%06d wins!\n”, 5321);
printf(“The number%-6d wins!\n”, 5321);

Dr. Xing Lecture #6 20

Customizing Floating-Point Output

Dr. Xing Lecture #6 21

Customizing Floating-Point Output (1)

• Floating point output (float and double) can be
formatted in the same manner, using “%X.Yf”).
– X is the total number of digits to display (i.e., the

field width)
– Y is precision width: the number of digits to display

to the right of the decimal point, i.e., the number of
decimal digits

• The same rules for field width apply as for
integer formatting.

Dr. Xing Lecture #6 22

Customizing Floating-Point Output (2)

• The specified number of decimal digits is
always displayed

• If no precision is specified, printf() prints 6
decimal positions

• “%Lf” indicates the type is long double

Dr. Xing Lecture #6 23

Examples

Value Placeholder Output

3.14159 %5.2f 3.14

3.14159 %3.2f 3.14

3.14159 %5.3f 3.142

0.1222 %4.2f 0.12

-0.009 %8.5f -0.00900

4.1 %f 4.100000

The specified number of decimal digits is always displayed

If no precision is specified, printf() prints 6 decimal positions

Dr. Xing Lecture #6 24

Customizing Character Output

Dr. Xing Lecture #6 25

Customizing Character Output

• The same rules for field width apply as for integer
formatting

• For example:
printf(“%c%6c”, ‘a’, ’b’);
a b
printf(%c%06c”, ‘a’, ‘b’);
a00000b

Dr. Xing Lecture #6 26

Exercises (3)
Show what the following printf statements print out:
• printf(“%d%c%f”, 23, ‘a’, 5.3);

• printf(“%d %c %f”, 23, ‘a’, 5.3);

• int num1=23;
char bee = ‘a’;
float num2=5.3;
printf(“%d %c %f”, num1, bee, num2);

Dr. Xing Lecture #6 27

Exercises (4)

Show what the following printf statements print out:

• printf(“%d\t%c\t%5.1f\n”, 23, ‘a’, 51.3);

• printf(“%d\t%c\t%5.1f\n”, 107, ‘A’, 56.7);

• printf(“%d\t%c\t%5.1f\n”, 1753, ‘D’, 151.3);

• printf(“%d\t%c\t%5.1f\n”, 3, ‘c’, 0.3);

Dr. Xing Lecture #6 28

Exercises (5)
Show what the following printf statements print out:

• printf(“The number%dis my favorite number.”, 23);
• printf(“The number is %6d”, 23);
• printf(“The number is %06d”, 23);

Dr. Xing Lecture #6 29

Exercises (6)
Show what the following printf statements print out:

• printf(“The tax is %6.2f this year.”, 233.32);
• printf(“The tax is %8.2f this year.”, 233.32);
• printf(“The tax is %08.2f this year.”, 233.32);

Dr. Xing Lecture #6 30

Use of Special Characters in printf()

Dr. Xing Lecture #6 31

Use of \r in printf()
• printf(“This line disappears.\r…A new line\n”);
• The return character (\r) repositions the output

at the beginning of the curent line without
advancing the line. Therefore, all data that
were placed in the output stream are erased

…A new line

Dr. Xing Lecture #6 32

Use of \0 in printf()
• printf(“A null character\0kills the rest of the

line\n”);
• The null character (\0) effectively kills the rest

of the line

A null character

Dr. Xing Lecture #6 33

Use of escape character \ in printf()
• Quotes are used to identify the format string in printf

function, we cannot use them as print characters. To
print them, we must use the escape character with the
quote(\”) which tell printf() that what follows is not the
end of the string but a character to be printed.

• printf(“This is \“it\” in double quotes\n”);
• Output: This is “it” in double quotes

• Similarly, for single quote!

Dr. Xing Lecture #6 34

Common Output Errors

Dr. Xing Lecture #6 35

Exercise (7)
• Each of the following printf has at least one

error. Try to find it.

Printf(“%d %d %d\n”, 33, 66);

printf(“%d %d\n”, 33, 44, 55)

Dr. Xing Lecture #6 36

Summary of Lecture #6

• Formatted output function printf()
– Conversion codes %d %c %f etc

– Field width specification

– Flag modifiers: 0 and –

– Use of special characters in printf()

– Common errors

Dr. Xing 37

Things To Do

• Review lecture notes
• Homework & Lab assignments

Next Topic
• Formatted Input scanf()

	ECE160: Foundations of Computer Engineering I� �Lecture #6 – Formatted Output prinf()
	Administrative Issues
	Review of Lecture #5
	Outline
	Formatted Input/Output
	Formatted Input/Output
	Format Output
	printf()
	Example
	Placeholders
	Conversion Codes/Specifiers �(Examples)
	Customizing Integer Output
	Customizing Integer Output (1)
	Customizing Integer Output (2)
	Customizing Integer Output (3)
	Examples
	Exercises (1)
	Customizing Integer Output (4)
	Exercises (2)
	Customizing Floating-Point Output
	Customizing Floating-Point Output (1)
	Customizing Floating-Point Output (2)
	Examples
	Customizing Character Output
	Customizing Character Output
	Exercises (3)
	Exercises (4)
	Exercises (5)
	Exercises (6)
	Use of Special Characters in printf()
	Use of \r in printf()
	Use of \0 in printf()
	Use of escape character \ in printf()
	Common Output Errors
	Exercise (7)
	Summary of Lecture #6
	Things To Do

