UNIVERSITY OF MASSACHUSETTS DARTMOUTH

ECE160: Foundations of Computer Engineering I

Lecture #5 – Constants

Instructor: Dr. Liudong Xing SENG-213C, lxing@umassd.edu ECE Dept .

Administrative Issues (1/30, Mon.)

- Homework #1 due <u>TODAY</u>
 - Please follow the "submission guidelines" available in the course website to submit your answers to your name folder at the class M: drive if you haven't
 - Late submission is subject to penalty.
- Lab#2 assigned today
 - Due by 5pm, Wednesday, Feb. 1
- Lab#1 grade is available from M: drive
 - Please send your grade concern to TA Peter (glv@umassd.edu) and cc to me if there is any

Review of Lecture #4 (1)

- Four standard data types in C
 - void
 - short int, int, long int (integer)
 - char
 - float, double, long double (floating point)
- Variables
 - **Declaration**: to name a variable
 - Definition: to create a variable, and reserve memory for it
 - Initialization: assign an initial value to a variable

Review of Lecture #4 (2)

- Good programming practice
 - Have one definition/declaration per line
 - Have one initialization per line
 - Separate variable declaration from variable initialization
 - Always remember to initialize variables

int num1=0, num2=0; double float1=0; char chara1='a';

VS.

int num1; int num2; double float1; char chara1; num1 = 0; num2 = 0; float1 = 0; chara1 = 'a';

Recommended!

Constants

- Different types of constants
- How to use constants in the program

Textbook: Chapter 2.3

Constants

- Constants are data whose values cannot be changed while the program is running.
- Constants have a type (like variables)
 - Integer constants
 - Floating point constants
 - Character constants
 - String constants

Integer Constants

• int temperature = 78; /* 78 is an integer constant*/

- Integer constants are simply coded as you would use them in everyday life!
- The default type is signed integer or signed long integer if the number is large
- You can override the default by specifying u or U (for unsigned) and I or L (for long) after the number

Integer Constants (Cont'd)

• Examples:

-32271L	long int
-100	int
78	int
76542LU	unsigned long int

- Note: there is no way to specify a short int constant in C!
- Good programming practice
 - Both upper- and lower- case codes are allowed, but
 - Prefer the capital notations L and U.

Floating-Point Constants

- These are numbers with decimal parts.
- The default form is double.
- If you want the resulting type to be float or long double use f or F, and I or L respectively.
- Again, always prefer capitals.

Floating-Point Constants (Cont'd)

• Examples:

0.0 double
2.3 double
3.1415926536L long double
3.14 double
-2.58F float

Character Constants

- Character constants are enclosed between two single quotes.
 - Examples:

 In addition, there can be a backslash \ (the escape character). The backslash is used when the character does not have a graphic associated with it.

> backspace: '\b' newline: '\n' tab: '\t'

null character: '\0' single quote: '\" double quote: '\"'

String Constants

- A sequence of characters enclosed in double quotes. "Hello" "Hello\n"
- Difference between the null character and the empty string.

'\0' → null character
" → empty string

1) A null character corresponds to 8 zero bits: <u>https://www.ascii-code.com/</u>

2) An empty string is a string containing nothing.

Lecture #5

Constants

✓ Different types of constants

How to use constants in the program

How do we use constants in the program?

- Three different ways:
 - Literal constants
 - Defined constants
 - Memory constants

Literal Constants

- A literal is an unnamed constant used to specify data
- Examples:
 - b + 3.1 /*numeric literal 3.1*/
 - b * 2 /*numeric literal 2*/
 - 'a' /*a character literal */
 - "hello" /*a string literal*/

Defined Constants

• Use preprocessor command:

#define name expression

• Example:

#define PI 3.14159 #define num 2

- The expression that follows the name replaces the name wherever it is found in the source program
- Good programming practice:
 - Put all the #define statements at the beginning of your program.
 - Use the #define statement, instead of literal constants.

Memory Constants

• Use a C type qualifier:

const type identifier = value;

• Example:

```
const float PI = 3.14159;
```

- Memory constants fix the contents of a memory location.
- Can we change the value of PI in our program?

No!!!

An Example

• Write a C program that can output the value of PI

```
#include "stdio.h"
void main(void)
{
    printf("The value of PI is: %f\n", 3.14159);
}
```

- Modify the program by changing the Literal Constant
 3.14159 to a Defined Constant
- Modify the program by changing the Literal Constant 3.14159 to a Memory Constant

Summary of Lecture #5

- Constants
 - Four types: integer, floating point, character, string
 - Three ways to code constants in the program:
 - Literal: an unnamed constant used to specify data
 - Defined: use the preprocessor command #define name expression (the expression that follows the name in the command replaces the name wherever it is found in the source program)
 - Memory: use a C type qualifier: const type identifier = value; (memory constants fix the content of a memory location)

Things To Do

- Lab#2
 - Due by 5pm, Wednesday, Feb. 1.

Next Topic

Formatted Input/Output