UNIVERSITY OF MASSACHUSETTS DARTMOUTH

ECE160: Foundations of Computer Engineering I

Lecture \#2 - Number Systems

Instructor: Dr. Liudong Xing SENG-213C, Ixing@umassd.edu ECE Dept.

Administrative Issues (1/20, Fri)

- The first lab will be assigned on Monday, Jan. 23
- Lab L1: Monday 10-11:50am
- Lab L2: Wednesday 10-11:50am
- Due by 5pm, Wednesday, Jan. 25
- Teaching Assistant: Mr. Guixiang (Peter) Lyu
- Email: glv@umassd.edu
- Lab assistant and grading
- Office hour (SENG224): Tue. \& Thu. 10:00am - 11:00am
- The last day to Add/Drop is Tuesday, Jan. 24.

Review of Lecture \#1

- Course syllabus \& operational details
- Definitions of computers
- History of computers

Course website: https://xing160.sites.umassd.edu/

L \#1 Review Questions (True/False)

- ___ The name of the first general-purpose electronic digital computer is ENIAC
\qquad IBM introduces the first microprocessor 4004
- \qquad Computers are made of hardware and software ___ It's widely accepted to classify computers into generations based on the fundamental hardware technology employed (vacuum tubes \rightarrow transistors \rightarrow integrated circuits)
- ___ The evolution of computers has been characterized by increasing processor speed, increasing component size, and increasing memory size.

Objectives of Lecture\#2

1. To understand basic number systems concepts (base, positional/place value, symbol/digit value)
2. To understand how to work with numbers represented in binary, octal, and hexadecimal number systems
3. To be able to convert back and forth between decimal numbers and their binary, octal, and hexadecimal equivalents
4. To be able to abbreviate binary numbers as octal or hexadecimal numbers
5. To be able to convert octal and hexadecimal numbers to binary numbers

Topics

- Overview of number systems
- Number systems conversions

Number Systems

- Two basic types of number systems:
- Non-positional
- E.g.: Roman numerals: I, II, III, IV, V ... X, XI
- Normally only useful for small numbers
- Positional
- E.g.: Decimal numbers: 1, 2, 3, ... 111
- Each position in which a digit/symbol is written has a different positional value

Positional Number System with Base b

positional value (a power of the base b)

Positional Number Systems (Example)

Decimal number systems

1. a base of 10 (i.e., $b=10$; determines the magnitude of a place).
2. is restricted to 10 re-usable digits/symbols ($0,1,2,3,4,5,6,7,8,9$)
3. the value of a digit depends on its position
(digit x positional value $=$ digit x base ${ }^{\text {position }}$)
4. sum of the value of all digits gives the value of the number.

Examples: $\quad 587_{10} \quad 375.17_{10}$

Example Explanation

$$
\begin{aligned}
587_{10} & =5 \times 10^{2}+8 \times 10^{1}+7 \times 100 \\
& =5 \times 100+8 \times 10+7 \times 1 \\
& =500+80+7 \\
& =587
\end{aligned}
$$

0 : position 10° : positional value 7×10^{0} : value of digit 7
$375.17_{10}=3 \times 10^{2}+7 \times 10^{1}+5 \times 10^{0}+1 \times 10^{-1}+7 \times 10^{-2}$

$$
=3 \times 100+7 \times 10+5 \times 1+1 \times 0.1+7 \times 0.01
$$

$$
=300+70+5+0.1+0.07
$$

$$
=375.17
$$

-2: position
10^{-2} : positional value
7×10^{-2} : value of digit 7

Exercise

- Specify the value of the digit 5 in the following decimal numbers:

25
51
4538

Now we have learned the basic number systems concepts

- base
- positional/place value: power of the base
- symbol/digit value: digit x positional value
"Objective \#1"

Number Systems C Programmers Use

Binary Number Systems

- Computers use the binary number system (a.k.a. base 2).
- Instead of using ten digits (0-9), the binary system uses only two digits (0 and 1)
- Each digit has a place/positional value which is a power of 2 (base).
- Example:

$$
\begin{array}{llllllll}
\frac{1}{1} & \frac{0}{5} & \underline{0} & \frac{1}{2} & \frac{1}{2} & \underline{0} & \frac{1}{l} & \\
\hline & 5 & 4 & 3 & 2 & 1 & 0 & \text { position } \\
2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} & \text { positional value }
\end{array}
$$

Working with Large Numbers

0101000010100111

- Memory addresses and other data can be quite large.
- Humans can't work well with binary numbers.
> There are simply too many digits to deal with.
- Therefore, we sometimes use the octal or hexadecimal number system.

Octal Number System

- The octal number system is also known as base 8. The values of the positions are calculated by taking 8 to some power.
-Why is the base 8 for octal numbers?
- Because we use 8 symbols, the digits 0 through 7 .

Hexadecimal Number System

- The hexadecimal number system is also known as base 16. The values of the positions are calculated by taking 16 to some power.
- Why is the base 16 for hexadecimal numbers?
- Because we use 16 symbols, the digits 0 through 9 and the letters A through F.
- Binary
- Base 2
- 2 symbols:0,1
- Octal
- Base 8
- 8 symbols: 0,1,2,3,4,5,6,7
- Decimal
- Base 10
- 10 symbols: 0,1,2,3,4,5,6,7,8,9
- Hexadecimal
- Base 16
- 16 symbols: 0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F
- More compact representation of the binary system

Exercise

Please continue to fill in

 the equivalent numbers for each number system| Decimal
 (base 10) | Binary
 (base 2) | Octal
 (base 8) | Hexadecimal
 (base 16) |
| :--- | :--- | :--- | :--- |
| $\ldots \ldots$ | $\ldots \ldots$ | $\ldots \ldots$ | $\ldots \ldots$ |
| 15 | 1111 | 17 | F |
| 16 | 10000 | 20 | 10 |
| 17 | 10001 | 21 | 11 |
| 18 | | | |
| 19 | | | |
| 20 | | | |
| 21 | | | |
| 22 | | | |
| 23 | | | |
| 24 | | | |

Example of Equivalent Numbers

- Binary: 101000010100111_{2}
- Octal: 50247_{8}
- Decimal: 20647 $_{10}$
- Hexadecimal: 50A7 ${ }_{16}$

Notice how the number of digits gets smaller as the base increases.

Agenda

- Overview of number systems
- Positional and non-positional
- Base, positional value, symbol value (Objective \#1)
- Binary, decimal, octal, hexadecimal (Objective \#2)
- Number systems conversions

Number Systems Conversions

- Binary, Octal, and Hex to Decimal
- Decimal to Hex, Octal, and Binary
- Binary \longleftrightarrow Hex
- Binary \longleftrightarrow Octal
- Hex \longleftrightarrow Octal

Binary, Octal, Hex \rightarrow Decimal

Binary, Octal, Hex To Decimal

Multiply the decimal equivalent of each digit by its positional/place value (a power of the base b) and sum these products

In general (base is b: 2 for binary, 8 for Octal, 16 for Hex), $N=\ldots P_{3} P_{2} P_{1} P_{0} . P_{-1} P_{-2} P_{-3} \cdots$
$=\ldots+P_{3} b^{3}+P_{2} b^{2}+P_{1} b^{1}+P_{0} b^{0}+P_{-1} b^{-1}+P_{-2} b^{-2}+P_{-3} b^{-3}+\ldots$

Binary to Decimal Conversion (Examples)

$\mathbf{1 0 0 1 1 0 1}_{2}$

1101.11_{2}

Octal to Decimal Conversion (Examples)

$\mathbf{1 7 3 . 2 5}_{8}$

Hexadecimal to Decimal Conversion (Examples)

1AB. ${ }_{16}$

FACE_{16}

Now we have learned how to convert from Binary, Octal, Hex To Decimal

To convert any base to decimal we multiply the decimal equivalent of each digit by its positional/place value (a power of the base) and sum these products

Number Systems Conversions (Revisit)

\checkmark Binary, Octal, and Hex to Decimal

- Decimal to Hex, Octal, and Binary
- Binary \longleftrightarrow Hex
- Binary \longleftrightarrow Octal
- Hex \longleftrightarrow Octal

Decimal to Binary, Octal, or Hexadecimal

To convert decimal numbers to any base we divide with the corresponding base until the quotient is zero and write the remainders in the reverse order.

Decimal to Octal Conversion

- Divide the number successively by 8
- After each division record the remainder - it will be $0,1, \ldots$, or, 7
- Continue until the result of the division (quotient) is 0
- Example: Convert $\left.123\right|_{10}$ to Base 8

Decimal to Binary Conversion

- Divide the number successively by 2
- After each division record the remainder
- it will be either a 1 or 0
- Continue until the result of the division (quotient) is 0
- Example: convert 42_{10} to Base 2

Decimal to Hexadecimal Conversion

- Divide the number successively by 16
- After each division record the remainder - it will be $1,2, \ldots$, or 9 , or A, B, \ldots, or F
- Continue until the result of the division (quotient) is 0
- Example: convert 42_{10} to Base 16

Summary (Objective \#3)

Now we have learned how to convert decimal to any other base and any other base to decimal.

- To convert decimal numbers to any base we divide with the corresponding base until the quotient is zero and write the remainders in reverse order.
- To convert any base to decimal we multiply the decimal equivalent of each digit by its positional / place value (a power of the base) and sum these products

Number Systems Conversions (Agenda)

- Binary, Octal, and Hex to Decimal
- Decimal to Hex, Octal, and Binary
- Binary \longleftrightarrow Hex
- Binary \longleftrightarrow Octal
- Hex \longleftrightarrow Octal

Binary \longleftrightarrow Hex

Binary to Hexadecimal Conversion

$\left.10100010111001\right|_{2}=\left.?\right|_{16}$

Work from right to left

 Divide into 4-bit groups

NOTE: \# is a place holder for zero!

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Hexadecimal to Binary Conversion

FACE $_{16}=\left.?\right|_{2}$
$\overbrace{1111}^{F} \overbrace{1010}^{A} \overbrace{1100}^{C} \underbrace{E}_{1110}$
write each Hex digit as its fourdigit binary equivalent
\therefore FACE $_{16}=\left.1111101011001110\right|_{2}$

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Binary \longleftrightarrow Octal

Binary to Octal Conversion

$\left.10101110001101\right|_{2}=\left.?\right|_{8}$

Work from right to left
Divide into 3 bit groups

$$
\begin{aligned}
& \underbrace{\# 10}_{2} \underbrace{101} \underbrace{110} \underbrace{001} \underbrace{001} \\
& \underbrace{101}
\end{aligned}
$$

$\therefore \mathbf{1 0 1 0 1 1 1 0 0 0 1 1 0 1 ~}_{2}=\left.25615\right|_{8}$

Binary	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Octal to Binary Conversion

Hexadecimal \longleftrightarrow Octal

How do we convert from hexadecimal to octal and vice versa?

Convert to binary first!

Exercise

- Convert 181_{10} to binary and hex
- Convert $121 \mathrm{~F}_{16}$ to decimal
- Convert 01010101100_{2} to hex
- Convert $\mathrm{A}_{17 \mathrm{~F}_{16}}$ to octal
- Convert 010101.011 2 to octal

Summary Lecture\#2

1. We learned basic number systems concepts (base, positional/place value, symbol value)
2. We learned how to work with numbers represented in binary, octal, and hexadecimal number systems
3. We learned how to convert back and forth between decimal numbers and their binary, octal, and hexadecimal equivalents
4. We learned how to abbreviate binary numbers as octal or hexadecimal numbers
5. We learned how to convert octal and hexadecimal numbers to binary numbers

Things To Do

- Review Lecture \#2
- The first lab due by 5pm, Wednesday, Jan. 25
- Homework \#1 due Monday, Jan. 30

Next Topic

- Introduction to C Programming

