
ECE160: Foundations of Computer Engineering I

Lecture #3 – Introduction to C

Instructor: Dr. Liudong Xing
SENG213C, lxing@umassd.edu

ECE Dept.

Administrative Issues
• The first lab assigned

– Lab L1: Monday (1/23) 10-11:50am
– Lab L2: Wednesday (1/25) 10-11:50am
– Due by 5pm, Wednesday, Jan. 25
– TA (Lab assistant & Grader): Guixiang Lyu <glv@umassd.edu>
– Lab assistant: Hailey Williams <hwilliams3@umassd.edu>

• Homework #1 assigned
– Due 9am, Monday, Jan. 30

Dr. Xing 2

Go to http://xing160.sites.umassd.edu/

Dr. Xing Lecture #3 3

Review of Lecture #2

• Basic concepts of number systems
– Base, positional value, symbol value
– Binary, decimal, octal, hexadecimal

• Number systems conversions
– Binary, Octal, Hex  Decimal
– Binary Hex, Binary  Octal, Hex  Octal

Dr. Xing Lecture #3 4

Topics

• Definitions and conventions
• Computer languages
• Your first C program
• Software development lifecycle

Dr. Xing Lecture #3 5

Definitions
Term Definition

bit 0 or 1
byte (B) a group of 8 bits
nibble (nybble) half a byte (4 bits)
word (w) a group of bits that is processed simultaneously.

a word may consist of 8/16/32/other number of bits
machine dependent
(ex: 8086 – 16 bits; 80386/80486/Pentium – 32 bits)

double word 2 words
msb (most significant bit) the leftmost bit in a word
lsb (least significant bit) the rightmost bit in a word
Hz (hertz) reciprocal of second

Dr. Xing Lecture #3 6

Conventions
Term Normal Usage Usage as a Power of 2

Kilo (K) 103 210 =1,024
Mega (M) 106 220 =1,048,576
Giga (G) 109 230 =1,073,741,824
Tera (T) 1012 240 =1,099,511,627,776
Mili (m) 10-3

Micro (m) 10-6

Nano (n) 10-9

Pico (p) 10-12

• Powers of 2 are most often used in describing memory capacity.
– Ex: 1Kilobyte (KB) =1024 bytes= 210 bytes

• Powers of 10 are used to describe the CPU clock frequencies:
cycles per second (Hz)
– Ex: Pentium 4 --1.8GHz = 1.8x109 Hz

Dr. Xing Lecture #3 7

Computer Language Evolution

• Machine languages
• Symbolic/assembly languages
• High-level languages

Dr. Xing Lecture #3 8

Machine Languages

• Machine dependent
• Binary-based code

– made of streams of 0s and 1s
• The only language understood by computers

• Example of a machine language instruction:
00000101 00010000 00000000

ADD Value of Address to
operation 1st operand store result

Dr. Xing Lecture #3 9

Low-Level Programming Languages:
Machine Languages

A sample machine language program:

10111000 00000101 00000000
00000101 00010000 00000000
00000101 00100000 00000000
10100011 00000000 00000001

Do you understand
what this program does?

Dr. Xing Lecture #3 10

Assembly Languages

• Machine dependent
• Numbers, symbols, and abbreviations are used
• Example of an assembly language instruction:

MOV AL, 61h;
// load register AL with 61 in hexadecimal

Dr. Xing Lecture #3 11

High-Level Programming Languages

• Generally, machine-
independent

• Usually, several machine
instructions are combined
into one high-level
instruction.

• Examples:
– C, C++, LISP, JAVA

Dr. Xing Lecture #3 12

Compilers and Linkers

Starting from C source code, two steps in creating an
executable program

1. A program called the C compiler translates the C
code into an equivalent program (object file) in the
processor’s machine language (1’s and 0’s)

2. A program called the linker combines this translated
program with any library files it references (e.g.,
printf, scanf) to produce an executable machine
language program (.exe file)

Environments like Visual Studio do both steps when you
“build” the program

Dr. Xing Lecture #3 13

Modern Software Development

Source Code File Compiler

Object File

Executable File
Other Object Files
(perhaps libraries) Linker

Loader

1

2

3
3. To execute the program, a special OS program
called Loader (corresponding to an OS
command, e.g., run) is used to load the program
into the main memory and execute it.

Dr. Xing Lecture #3 14

Topics

Definitions and conventions
Computer languages
• Your first C program
• Software development lifecycle

Dr. Xing 15

Your First C Program

• Output:
when executing it, the
statement Hello world!
appears on the screen

/* The first C program
learned in ECE160 */

#include <stdio.h>

void main(void)

{

printf("Hello world!");

}

Dr. Xing 16

Comments

• /* any text, number, or
character */

• /* and */ must form a couple,
but need not be on the same
line

• No blanks between slash
and asterisk

• Comments can appear
anywhere in the code.

• Comments can not be
nested.
– /* /* bla bla */ */ !!! Illegal.

/* The first C program
learned in ECE160 */

#include <stdio.h>

void main(void)

{

printf(“Hello world!");

}

Dr. Xing 17

Preprocessor Directives

• Every C program consists of
preprocessor directives (commands
to the C preprocessor)

– Start with #

• Preprocessor: the first phase of a C
compilation in which the source
statements are prepared for the
compilation and any necessary
libraries are loaded; preparation
prior to the translation of C code
into machine language instructions

/* The first C program
learned in ECE160 */

#include <stdio.h>

void main(void)

{

printf(“Hello world!");

}

Dr. Xing 18

Preprocessor Directives (Cont’d)
• Come at the beginning of the program, telling the

preprocessor how to prepare the program for compilation.

• Most important preprocessor command: include
– Tell the preprocessor that we need information from selected

libraries known as header files
– All header files end in .h

• #include <stdio.h> tells preprocessor to attach the stdio.h
file to the source file
– stdio.h: standard input / output functions, e.g. printf

Dr. Xing 19

Functions • Every C program consists of: one or
more functions. One and only one of
the functions of the program must be
called main()

• Information can be passed from calling
function to function being called and
vice versa
– First void: no information is passed

from main() to OS
– Second void inside the parentheses: no

information is passed from OS to main(),
or main() does not take any arguments

– A string constant is passed from main()
to printf() (An output function contained
in a library file: stdio.h)

/* The first C program
learned in ECE160 */

#include <stdio.h>

void main(void)

{

printf(“Hello world!");

}

Dr. Xing 20

Functions (Cont’d)

• Function starts with an open bracket { and
closes with a close bracket }

• The lines enclosed in a pair of {} are called
a block of code

• You can define your own functions (later
lectures)

Dr. Xing 21

C is case sensitive!

• printf is different from PRINTF, Printf

• Traditionally C is written primarily in lowercase letters:
main, printf

• You may use whatever case when naming your self-
developed functions

Dr. Xing 22

Identifiers
• Identifiers are used to name data and other objects

(e.g. functions) in our program.

• The only valid name symbols are the capital letters A-
Z, the lowercase letters a-z, the digits 0-9, and the
underscore

• C is case sensitive
– Celsius, celsius, and CELSIUS are three different identifiers.

Dr. Xing 23

Identifier Name Rules
• The first character can not be a digit. It has to be an

alphabetic character or underscore.
• The identifier name must consist only of alphabetic

characters, digits, or underscores
• First 31 characters of an identifier are significant/used.
• DO NOT use a C reserved word /keywords (e.g., int).

Dr. Xing 24

Exercises
• Indicate the following names are valid or invalid

C names
Student
2names
$sum
Stud number
int
_systemname
SystemName
F_3
f%

Dr. Xing Lecture #4 25

Summary

/* The first C program
learned in ECE160 */

#include <stdio.h>

void main(void)

{

printf(“Hello world!”);

}

C comments

Directives indicating
to attach a file to the
beginning of the
source code prior
to compilation. This
file has info @ the
library function
printf we used in
our program

The mandatory
name for the
first function to
be executed is
main

We call the library
function printf
by using its name
followed by
parentheses

We send the
string enclosed
in parentheses
to the library
function

C statements
in program
body are
terminated
with a semicolon

The function
printf requires
the string be
enclosed in
double quotes

Braces indicate beginning
and end of a function body

Void indicate that we receive
nothing from OS and return
Nothing to OS

Dr. Xing Lecture #3 26

Topics

Definitions and conventions
Computer languages
Your first C program
• Software development lifecycle

Dr. Xing Lecture #3 27

Software Development Lifecycle
System

requirements

Analysis

Code

Test

Maintenance

Design

Waterfall Model

Dr. Xing Lecture #3 28

The Software Development Method
• System requirements

– Specify the problem, define requirements specifying what the
proposed system is to accomplish.

• Analysis
– Analyze the problem, look at different alternatives from a system

point of view
• Design

– Design an algorithm (a sequence of well-defined computational
steps that transform the input into the output) to solve the problem.

• Code
– Write programs to implement the algorithm.

• Test and verify the program.
• Maintain and update the program.

Dr. Xing Lecture #3 29

An Illustrative Example Problem

• Write a program that converts Celsius
temperatures to Fahrenheit.

Dr. Xing Lecture #3 30

Step 1: System Requirements

• Write a C program that takes as input a Celsius
temperature and converts it to Fahrenheit.

Dr. Xing Lecture #3 31

Step 2: Analysis

• The input is going to be a real number
representing the Celsius temperature.

• The output is going to be a real number
representing the Fahrenheit temperature.

Dr. Xing Lecture #3 32

Step 3: Design

Natural-Language Algorithm:

1. Prompt user for the Celsius temperature.
2. Read the Celsius temperature.
3. Store value in storage location called celsius.
4. Compute the Fahrenheit temperature by solving

the formula “fahrenheit = (9/5)*celsius+ 32”
5. Print out the value stored in location fahrenheit.

Dr. Xing Lecture #3 33

Step 4: Coding using C Programming
Language

Dr. Xing Lecture #3 34

temperature.c
#include <stdio.h>
int main(void) {
float celsius;
float fahrenheit;
printf("This program converts Celsius to Fahrenheit. \n");
printf("Please enter a Celsius temperature. \n");
scanf("%f", &celsius);
fahrenheit = 9.0/5.0 * celsius + 32;
printf("The temperature in Fahrenheit is: %f\n", fahrenheit);
return 0;}

Dr. Xing Lecture #3 35

Step 5: Run & Test

Source Code File Compiler

Object File

Executable File
Other Object Files
(perhaps libraries) Linker

Loader

Dr. Xing Lecture #3 36

Why Testing?
• Many things can go wrong!

– Things are rarely perfect on the first attempt

• There are two types of errors
– Syntax: the required form of the program punctuation,

keywords (int, float, return, …) etc.
• The C compiler always catches these “syntax errors” or “compiler

errors”
– Semantics (logic): what the program means

• What you want it to do
• The C compiler cannot catch these kinds of errors!
• They can be extremely difficult to find

Dr. Xing Lecture #3 37

Why Testing? (Cont’d)

• Both the compiler and linker could detect syntax errors

• Even if no errors are detected, logic errors (“bugs”)
could be lurking in the code

• Getting the logic errors out is a challenge even for
professional software developers

Dr. Xing Lecture #3 38

Summary of Lecture #3

1. Computer languages evolution: machine  assembly
 high-level natural (AI)

2. The first C program
– preprocessor directives
– main(), printf()
– comments

3. A popular software development lifecycle – waterfall
model

4. Two types of errors: syntax and logic / semantics
errors

Dr. Xing Lecture #3 39

Things To Do
• The first lab

– Due by 5pm, Wednesday, Jan. 25
• Homework #1

– Due 9am, Monday, Jan. 30

http://xing160.sites.umassd.edu/

Next Topic
• Data Types and Variables

	ECE160: Foundations of Computer Engineering I� �Lecture #3 – Introduction to C
	Administrative Issues
	Review of Lecture #2
	Topics
	Definitions
	Conventions
	Computer Language Evolution
	Machine Languages
	Low-Level Programming Languages: �Machine Languages
	Assembly Languages
	High-Level Programming Languages
	Slide Number 12
	Slide Number 13
	Topics
	Your First C Program
	Comments
	Preprocessor Directives
	Preprocessor Directives (Cont’d)
	Functions
	Functions (Cont’d)
	C is case sensitive!
	Identifiers
	Identifier Name Rules
	Exercises
	Summary
	Topics
	Software Development Lifecycle
	Slide Number 28
	An Illustrative Example Problem
	Step 1: System Requirements
	Step 2: Analysis
	Step 3: Design
	Step 4: Coding using C Programming Language
	temperature.c
	Slide Number 35
	Why Testing?
	Why Testing? (Cont’d)
	Summary of Lecture #3
	Things To Do

